摘要:
A backlight device includes a first substrate having optical transparency and having first and second surfaces opposite to each other. An LED thin-film is fixed to the first surface of the first substrate. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film to emit light. An anode wiring and a cathode wiring are provided on the first surface of the first substrate. A second substrate has optical transparency, and has first and second surfaces opposite to each other. The second surface of the second substrate faces the first surface of the first substrate. A reflection film is provided on the first surface of the second substrate. A light diffusion plate is provided so as to face the second surface of the first substrate and has a function to diffuse incident light.
摘要:
An LED backlight device includes a substrate having an optical transparency and an LED thin-film layered structure fixed to a first surface of the substrate. The LED thin-film layered structure is formed of epitaxially grown inorganic material layers as a P-N junction device. An anode electrode and a cathode electrode are formed on the LED thin-film layered structure. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film layered structure. A wiring structure electrically connects the anode driver IC and the anode electrode of the LED thin-film layered structure and electrically connects the cathode driver IC and the cathode electrode of the LED thin-film layered structure. A phosphor is formed on the second surface of the substrate opposite to the first surface.
摘要:
A backlight device includes a first substrate having optical transparency and having first and second surfaces opposite to each other. An LED thin-film is fixed to the first surface of the first substrate. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film to emit light. An anode wiring and a cathode wiring are provided on the first surface of the first substrate. A second substrate has optical transparency, and has first and second surfaces opposite to each other. The second surface of the second substrate faces the first surface of the first substrate. A reflection film is provided on the first surface of the second substrate. A light diffusion plate is provided so as to face the second surface of the first substrate and has a function to diffuse incident light.
摘要:
A backlight device includes a first substrate, and an LED thin-film layered structure (epitaxially grown inorganic material layers) fixed to a surface of the first substrate. An anode electrode and a cathode electrode are formed on the LED thin-film layered structure. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film layered structure. A wiring structure electrically connects the anode driver IC and the anode electrode of the LED thin-film layered structure, and electrically connects the cathode driver IC and the cathode electrode of the LED thin-film layered structure. A second substrate has an optical transparency and is disposed to face the surface of the first substrate on which the LED thin-film layered structure is formed. A phosphor is formed on a surface of the second substrate facing the first substrate and is disposed on a position corresponding to the LED thin-film layered structure.
摘要:
An LED backlight device includes a first substrate having optical transparency and having first and second surfaces. An LED thin-film layered structure is fixed to the first surface of the first substrate, and is formed of epitaxially grown inorganic material layers as a P-N junction device. An anode electrode of the LED thin-film layered structure is connected to an anode driver IC via an anode wiring. A cathode electrode of the LED thin-film layered structure is connected to a cathode driver IC via a cathode wiring. A phosphor is provided on the second surface of the first substrate. The LED backlight device further includes a second substrate having optical transparency and having first and second surfaces. The first surface of the second substrate faces the first surface of the first substrate. A reflection layer is provided on the second surface of the second substrate.
摘要:
A light source apparatus emits light image information. A reflective layer is formed on a planarization film formed on a metal substrate. LED thin films are arranged in a matrix having columns extending in first directions and rows extending in second directions perpendicular to the first directions, the LED thin films being bonded to the reflective layer by means of intermolecular force. First wires are connected to first electrodes of the LED thin films. Second wires are connected to second electrodes of the LED thin films. A first driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of first wires. A second driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of second wires.
摘要:
A backlight device includes a first substrate having optical transparency and having a first surface and a second surface. An LED thin-film is fixed to the first surface of the first substrate. The LED thin-film is formed of epitaxially grown inorganic material layers as a P-N junction device. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film. An anode wiring is provided for connecting the anode driver IC and the anode electrode, and a cathode wiring is provided for connecting the cathode driver IC and the cathode electrode. A second substrate has optical transparency and having a function to diffuse incident light. The second substrate is provided so as to face the second surface of the first substrate.
摘要:
A backlight device includes a first substrate having optical transparency and having a first surface and a second surface. An LED thin-film is fixed to the first surface of the first substrate. The LED thin-film is formed of epitaxially grown inorganic material layers as a P-N junction device. An anode electrode and a cathode electrode are formed on the LED thin-film. An anode driver IC and a cathode driver IC are provided for driving the LED thin-film. An anode wiring is provided for connecting the anode driver IC and the anode electrode, and a cathode wiring is provided for connecting the cathode driver IC and the cathode electrode. A second substrate has optical transparency and having a function to diffuse incident light. The second substrate is provided so as to face the second surface of the first substrate.
摘要:
A light source apparatus emits light image information. A reflective layer is formed on a planarization film formed on a metal substrate. LED thin films are arranged in a matrix having columns extending in first directions and rows extending in second directions perpendicular to the first directions, the LED thin films being bonded to the reflective layer by means of intermolecular force. First wires are connected to first electrodes of the LED thin films. Second wires are connected to second electrodes of the LED thin films. A first driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of first wires. A second driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of second wires.
摘要:
An information display apparatus includes a matrix of thin-film light-emitting diodes (LEDs) disposed on a transparent substrate. The thin-film LEDs are epitaxially grown on a semiconductor substrate, then transferred in strips to the transparent substrate, anchored by intermolecular forces, and separated into individual LEDs by photolithography and etching. The anodes and cathodes of the thin-film LEDs are connected to anode and cathode driving circuits by a matrix of thin-film electrical paths formed on the transparent substrate. The matrix of LEDs and interconnections is dense enough to display images of high quality, and provides enough pixels for the display of useful text and graphics on even small information display devices.