摘要:
An (alkylhalo)silane is prepared by using a fluidized bed reactor equipped with a feed line for reactant gas and a delivery line for product gas, charging the reactor with a contact mass comprising metallic silicon powder and a copper catalyst, and feeding a reactant gas containing an alkyl halide through the feed line into the reactor whereby the silane is formed by direct synthesis. A dust collector is connected to the delivery line for collecting the contact mass carried over with the product gas, which is fed back to the reactor. The feed of the reactant gas is controlled such that a linear velocity multiplied by a density may range from 0.2-2 kg/m.sup.2 .multidot.sec.
摘要:
An (alkylhalo)silane is prepared by charging a reactor with a contact mass comprising metallic silicon powder and a copper catalyst and feeding a gas containing an alkyl halide into the reactor whereby the silane is formed by direct synthesis. The contact mass in the reactor during reaction consists of particles having a mean particle size of 5-150 .mu.m and containing 10-80% by weight of particles having a particle size of up to 30 .mu.m and 10-90% by weight of particles having a particle size of at least 90 .mu.m. The contact mass is well fluidized to ensure rapid and uniform reaction whereby the (alkylhalo)silane is prepared at high selectivity with a minimized elutriating loss of contact mass.
摘要:
Alkylhalosilanes are produced by first fluidizing a metallic silicon powder with an inert gas, preheating the silicon powder at a temperature between 200.degree. C. and a steady reaction temperature while keeping the silicon powder fluidized, adding a copper catalyst to the preheated silicon powder to form a contact mass, and feeding an alkyl halide into the contact mass whereby the alkylhalosilanes are formed by direct synthesis. This process prevents the copper catalyst from being sintered by thermal hysteresis and activates a high catalysis on the contact mass at the start of reaction. The desired dialkyldihalosilane can be produced at a high selectivity.
摘要:
An alkylhalosilane is prepared by charging a reactor with a contact mass comprising a metallic silicon powder and a copper catalyst, and feeding an alkyl halide into the reactor whereby the silane is formed by direct synthesis. The contact mass contains 1-10,000 ppm of elemental boron. The addition of boron to the contact mass is effective for increasing the throughput of dialkyldihalosilane at desired STY in an inexpensive manner while suppressing formation of unnecessary hydrosilanes and disilanes.
摘要:
An alkylhalosilane is prepared by charging a reactor with a contact mass comprising a metallic silicon powder and a copper catalyst, and feeding an alkyl halide into the reactor whereby the silane is formed by direct synthesis. The use of a metallic silicon powder having a specific particle size distribution ensures effective fluidization whereby the alkylhalosilane of quality is formed at a high selectivity and in high yields.
摘要:
An alkylhalosilane is prepared by charging a reactor with a contact mass comprising metallic silicon powder and a copper catalyst and feeding a reactant gas containing an alkyl halide into the reactor whereby the silane is formed by direct synthesis. A phosphorus compound is added to the contact mass in an amount of 3,000-10,000 ppm calculated as phosphorus. The invention produces a more amount of dialkyldihalosilane in a desirable STY while minimizing the amount of unnecessary disilanes.
摘要:
By reacting two types of organosiloxane compounds in the presence of an alkaline compound and under conditions that do not substantially promote equilibration reaction, a linear organosiloxane polymer having a single peak molecular weight distribution is simply and economically produced with minimized formation of cyclics.
摘要:
Disclosed is an all-solid-state lithium ion secondary battery excellent in cycle characteristics. The battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises anode active material particles, an electroconductive material and a solid electrolyte; wherein the anode active material particles comprise at least one active material selected from the group consisting of elemental silicon and SiO; and wherein, for the anode active material particles, a value A obtained by the following formula (1) is 6.1 or more and 54.8 or less: A=SBET×dmed×D Formula (1) where SBET is a BET specific surface area (m2/g) of the anode active material particles; dmed is a median diameter D50 (μm) of the anode active material particles; and D is a density (g/cm3) of the anode active material particles.
摘要:
The present invention is a negative electrode material for non-aqueous electrolyte secondary batteries, comprising at least: particles wherein silicon nanoparticles are dispersed in silicon oxide (silicon oxide particles); and a metal oxide coating formed on a surface of the silicon oxide particles. As a result, there is provided a negative electrode material for non-aqueous electrolyte secondary batteries that enables the production of a negative electrode suitable for lithium-ion secondary batteries and the like that provides improved safety and cycle performance over conventional negative electrode materials.
摘要:
This invention provides a negative electrode material for a rechargeable battery with a nonaqueous electrolyte, characterized in that the negative electrode material contains polycrystalline silicon particles as an active material, the particle diameter of crystallites of the polycrystalline silicon is not less than 20 nm and not more than 100 nm in terms of a crystallite size determined by the Scherrer method from the full width at half maximum of a diffraction line attributable to Si (111) around 2θ=28.4° in an x-ray diffraction pattern analysis, and the true specific gravity of the silicon particles is 2.300 to 2.320.
摘要翻译:本发明提供一种用于具有非水电解质的可再充电电池的负极材料,其特征在于,所述负极材料含有多晶硅颗粒作为活性材料,所述多晶硅的微晶粒径不小于20nm,而不是更多 以Scherrer法测定的微晶尺寸为100nm以上,衍射线的衍射线的全半宽度可归因于Si(111)在2θ附近; = x = 28.4°,X射线衍射图谱分析, 硅颗粒的重力为2.300〜2.320。