摘要:
A hydraulic pressure control device is provided that that controls hydraulic pressure of a clutch supplying torque to a continuously variable transmission while the vehicle is stopped and in a running range. The hydraulic pressure control device has an control section that estimates a clutch engagement hydraulic pressure for changing the clutch from an engaged state to a disengaged state based the hydraulic fluid pressure acting on the clutch during the stopping of the rotational movement of a primary pulley of the continuously variable transmission, and then controls regulation of the hydraulic pressure to the clutch from an engaged state to a disengaged state, when the vehicle is stopped and in the running range, so that the torque from the engine does not rotate a secondary pulley of the continuously variable transmission.
摘要:
A lock-up clutch control device controls a lock-up clutch provided in a torque converter in a vehicle. The lock-up clutch control device includes a sensor for detecting a rise of a vehicle speed; a differential pressure generator which generates a differential pressure to lock the lock-up clutch; and a controller. The controller is programmed to command the differential pressure generator to lock the lock-up clutch when the vehicle speed exceeds a predetermined low vehicle speed, after the vehicle is started; subsequently monitor the rise of the vehicle speed; and command the differential pressure generator to unlock the lock-up clutch when the monitored rise of the vehicle speed is lower than a preset value.
摘要:
A lock-up clutch control apparatus for controlling a lock-up clutch (6) provided in a torque converter (5) installed between an engine (3) and a transmission (4), is disclosed. The lock-up clutch control apparatus has a differential pressure generator (7,8) which engages, causes a slip of or disengages the lock-up clutch by adjusting the differential pressure supplied to the lock-up clutch (6); a sensor (11/15) for detecting a rotational speed of the engine; a sensor (16) for detecting an input rotational speed to the transmission; and a controller (1). The controller (1) conducts proportional integration control by using a command signal to the differential pressure generator (7,8), so that an actual slip rotational speed, which is the difference between the engine rotational speed (Np) and input rotational speed (Ni) to the transmission, becomes a target slip rotational speed (Nt). The controller is programmed to conduct integration accumulating the difference (ΔN) between the target slip rotational speed (Nt) and the actual slip rotational speed (SN); to determine whether the accumulated integrated value (I) is equal to or higher than a predetermined integration value (It); and to stop the integration when the accumulated integration value (I) is equal to or higher than the predetermined integration value (It).
摘要:
It is intended to provide a polynucleotide comprising a viral base sequence, the viral base sequence containing: a first base sequence encoding a viral replication protein, and a second base sequence encoding a viral movement protein, the second base sequence being located downstream of the first base sequence and having a linking site for linking with an exogenous base sequence encoding a polypeptide to be expressed, the linking site being located downstream of the second base sequence, the second base sequence being obtained by modifying with a base sequence in a native sequence derived from a virus by insertion, substitution, or addition. By using this, a vector containing a viral base sequence is constructed, and a protein is efficiently produced without worsening growth of a host cell containing the vector.
摘要:
An expression vector is constructed by transferring recombinant tomato mosaic virus (ToMV) cDNA, in which a coat protein gene of ToMV having a suppressor against a virus resistant reaction has been substituted by a GFP gene, into the downstream of a promoter capable of inducing steroid hormone-dependent transcription. In a transformed tobacco BY-2 cell obtained by transferring the above expression vector into a tobacco BY-2 cells, steroid hormone-dependent transcription is induced, thereby enabling the amplification of mRNA of the GFP gene and induction of the expression of GFP.
摘要:
A lock-up clutch control device controls a lock-up clutch provided in a torque converter mounted between an engine and a transmission of a vehicle. The lock-up clutch control device switches between a converter state and a lock-up state by controlling a differential pressure supplied to the lock-up clutch. The lock-up clutch control device has a controller and a differential pressure generator for generating the differential pressure in response to a differential pressure command value. The controller calculates a first differential pressure command value which decreases at a predetermined rate, after the vehicle speed becomes a first predetermined speed; sets the differential pressure command value to a second differential pressure command value, before the vehicle speed becomes a second predetermined speed; and sets the differential pressure command value to a value at which the lock-up clutch is immediately released, when the vehicle speed becomes the second predetermined speed.
摘要:
A lock-up clutch control device which controls a lock-up clutch (6) provided in a torque converter (5) interposed between an engine (3) and a transmission (4) used with a vehicle, is disclosed. The lock-up clutch control device has a differential pressure generating device (7,8), a vehicle speed sensor (13), a throttle valve opening sensor (14), an transmission input shaft rotation speed sensor (16), engine torque detection means (2), and a controller (1). The controller (1) determines, based on the detected vehicle speed (VSP) and the detected throttle valve opening (TVO), whether or not a control region of a torque converter is a converter region wherein control is performed to disengage the lock-up clutch. When the control region of the torque converter is not the converter region, the controller (1) determines whether or not the control region of the torque converter is a slip control region wherein control is performed to make the lock-up clutch slip, based on the detected input shaft rotation speed (Npri) of the transmission and the detected engine torque (Te). When the control region of the torque converter is the slip control region, the controller commands the differential pressure generating device (7,8) to cause a slip of the lock-up clutch (6).
摘要:
A control device of a lock-up clutch of a torque converter interposed between a transmission and engine used with a vehicle, is disclosed. The control device has a sensor which detects an input rotation speed to the torque converter, a sensor which detects an output rotation speed from the torque converter, a differential pressure control device which controls the differential pressure applied to the lock-up clutch, and a controller which sets a target slip rotation speed of the torque converter; calculates a real slip rotation speed which is a difference between the detected input rotation speed and the detected output rotation speed; and performs feedback control to determine the differential pressure applied to the lock-up clutch so that the real slip rotation speed coincides with the target slip rotation speed. The controller is programmed to: set the target slip rotation speed to a first target slip rotation speed determined from a vehicle running parameter; perform feedback control so that the real slip rotation speed coincides with the first target slip rotation speed; change over the first target slip rotation speed to a second target slip rotation speed according to an error between the first target slip rotation speed and the real slip rotation speed; after changing over, and perform feedback control so that the real slip rotation speed coincides with the second target slip rotation speed; wherein the first and second target slip rotation speeds are different functions of time.
摘要:
A lock-up clutch control apparatus for controlling a lock-up clutch (6) provided in a torque converter (5) installed between an engine (3) and a transmission (4), is disclosed. The lock-up clutch control apparatus has a differential pressure generator (7,8) which engages, causes a slip of or disengages the lock-up clutch by adjusting the differential pressure supplied to the lock-up clutch (6); a sensor (11/15) for detecting a rotational speed of the engine; a sensor (16) for detecting an input rotational speed to the transmission; and a controller (1). The controller (1) conducts proportional integration control by using a command signal to the differential pressure generator (7,8), so that an actual slip rotational speed, which is the difference between the engine rotational speed (Np) and input rotational speed (Ni) to the transmission, becomes a target slip rotational speed (Nt). The controller is programmed to conduct integration accumulating the difference (ΔN) between the target slip rotational speed (Nt) and the actual slip rotational speed (SN); to determine whether the accumulated integrated value (I) is equal to or higher than a predetermined integration value (It); and to stop the integration when the accumulated integration value (I) is equal to or higher than the predetermined integration value (It).
摘要:
A lock-up clutch control device, which controls a lock-up clutch (6) installed in a torque converter (5) interposed between an engine (3) and a transmission (4) used with a vehicle, is disclosed. The lock-up clutch control device has a differential pressure generating device (7,8) which engages or disengages the lock-up clutch by adjusting a differential pressure supplied to the lock-up clutch, a sensor (13) which detects a vehicle speed, and a controller. The controller is programmed to: determine whether or not the vehicle speed is equal to or larger than a first threshold value (V1) corresponding to a lock-up ON vehicle speed; command the differential pressure generating device to engage the lock-up clutch, when the vehicle speed is equal to or larger than the first threshold value (V1); determine whether or not the vehicle speed has reached a second threshold value (V2) larger than the first threshold value (V1); set a lock-up OFF threshold value (V3/V4) which depends on whether the vehicle speed has reached the second threshold value (V2); and command the differential pressure generating device to disengage the lock-up clutch, when the vehicle speed is equal to or less than the lock-up OFF threshold value.