摘要:
A bipolar transistor is provided which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The bipolar transistor further includes an intrinsic base overlying the upper surface of the collector pedestal, a raised extrinsic base conductively connected to the intrinsic base and an emitter overlying the intrinsic base. In a particular embodiment, the emitter is self-aligned to the collector pedestal, having a centerline which is aligned to the centerline of the collector pedestal.
摘要:
A method is provided for making a bipolar transistor which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The collector pedestal can be formed on a surface of a collector active region exposed within an opening extending through first and second overlying dielectric regions, where the opening defines vertically aligned edges of the first and second dielectric regions.
摘要:
A method is provided for making a bipolar transistor which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The collector pedestal can be formed on a surface of a collector active region exposed within an opening extending through first and second overlying dielectric regions, where the opening defines vertically aligned edges of the first and second dielectric regions.
摘要:
The preferred embodiment overcomes the difficulties found in the background art by providing a body contact and diffusion contact formed in a single shared via for silicon on insulator (SOI) technologies. By forming the body contact and diffusion contact in a single shared via, device size is minimized and performance is improved. Particularly, the formed body contact connects the SOI layer with the underlying substrate to avoid instabilities and leakage resulting from a floating SOI channel region. The formed diffusion contact connects device diffusions to above wiring to facilitate device operation. By providing the body contact and diffusion contact together in a single shared via, the preferred embodiment avoids the area penalty that would result from separate contacts. Additionally, the preferred embodiment provides a body contact that is self aligned with other devices, minimizing tolerances needed while minimizing process complexity. Additionally, the shared via body contact and diffusion contact can be selectively formed borderless to adjacent gate conductors in the device.
摘要:
A bipolar transistor is provided which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The bipolar transistor further includes an intrinsic base overlying the upper surface of the collector pedestal, a raised extrinsic base conductively connected to the intrinsic base and an emitter overlying the intrinsic base. In a particular embodiment, the emitter is self-aligned to the collector pedestal, having a centerline which is aligned to the centerline of the collector pedestal.
摘要:
Structure and method are provided for forming a bipolar transistor. As disclosed, an intrinsic base layer is provided overlying a collector layer. A low-capacitance region is disposed laterally adjacent the collector layer. The low-capacitance region includes at least one of a dielectric region and a void disposed in an undercut underlying the intrinsic base layer. An emitter layer overlies the intrinsic base layer, and a raised extrinsic base layer overlies the intrinsic base layer.
摘要:
Structure and method are provided for forming a bipolar transistor. As disclosed, an intrinsic base layer is provided overlying a collector layer. A low-capacitance region is disposed laterally adjacent the collector layer. The low-capacitance region includes at least one of a dielectric region and a void disposed in an undercut underlying the intrinsic base layer. An emitter layer overlies the intrinsic base layer, and a raised extrinsic base layer overlies the intrinsic base layer.
摘要:
A method is provided for fabricating a bipolar transistor in which a collector layer is formed which includes an active portion having a relatively high dopant concentration and a second portion which has a lower dopant concentration. An epitaxial intrinsic base layer is formed to overlie the collector layer in conductive communication with the active portion of the collector layer. A low-capacitance region is formed laterally adjacent to the second portion of the collector layer, the low-capacitance region including a dielectric region disposed in an undercut directly underlying the intrinsic base layer. An emitter layer is formed to overlie the intrinsic base layer.
摘要:
The capacitance of deep trench capacitors is enhanced by increasing the surface area of the doped region of the trench to be used for one electrode of the capacitor. After formation of the deep trench and a collar on an upper region of the trench, and after optional bottling of the trench, hemispherical silicon grain (HSG) is deposited on a lower region of the trench. The HSG is then oxidized, along with that portion of the silicon substrate not covered by HSG, to form a roughened surface in the trench, thereby enhancing the trench capacitance. Oxidation of the HSG and the substrate occurs simultaneously with formation of the buried plate, and the formed oxide may be stripped along with the collar, thereby providing a simpler and more robust capacitance enhancement scheme.
摘要:
A method is provided for fabricating a bipolar transistor that includes growing an epitaxial layer onto an underlaying region having a low dopant concentration and a trench isolation region defining the edges of an active region layer, implanting a portion of the epitaxial layer through a mask to define a collector region having a relatively high dopant concentration, the collector region laterally adjoining a second region of the epitaxial layer having the low dopant concentration; forming an intrinsic base layer overlying the collector region and the second region, the intrinsic base layer including an epitaxial region in conductive communication with the collector region; forming a low-capacitance region laterally separated from the collector region by the second region, the low-capacitance region including a dielectric region disposed in an undercut directly underlying the intrinsic base layer; and forming an emitter layer overlying the intrinsic base layer.