摘要:
A method is provided for fabricating a bipolar transistor in which a collector layer is formed which includes an active portion having a relatively high dopant concentration and a second portion which has a lower dopant concentration. An epitaxial intrinsic base layer is formed to overlie the collector layer in conductive communication with the active portion of the collector layer. A low-capacitance region is formed laterally adjacent to the second portion of the collector layer, the low-capacitance region including a dielectric region disposed in an undercut directly underlying the intrinsic base layer. An emitter layer is formed to overlie the intrinsic base layer.
摘要:
Structure and method are provided for forming a bipolar transistor. As disclosed, an intrinsic base layer is provided overlying a collector layer. A low-capacitance region is disposed laterally adjacent the collector layer. The low-capacitance region includes at least one of a dielectric region and a void disposed in an undercut underlying the intrinsic base layer. An emitter layer overlies the intrinsic base layer, and a raised extrinsic base layer overlies the intrinsic base layer.
摘要:
A bipolar transistor is provided which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The bipolar transistor further includes an intrinsic base overlying the upper surface of the collector pedestal, a raised extrinsic base conductively connected to the intrinsic base and an emitter overlying the intrinsic base. In a particular embodiment, the emitter is self-aligned to the collector pedestal, having a centerline which is aligned to the centerline of the collector pedestal.
摘要:
A method is provided for fabricating a bipolar transistor that includes growing an epitaxial layer onto an underlaying region having a low dopant concentration and a trench isolation region defining the edges of an active region layer, implanting a portion of the epitaxial layer through a mask to define a collector region having a relatively high dopant concentration, the collector region laterally adjoining a second region of the epitaxial layer having the low dopant concentration; forming an intrinsic base layer overlying the collector region and the second region, the intrinsic base layer including an epitaxial region in conductive communication with the collector region; forming a low-capacitance region laterally separated from the collector region by the second region, the low-capacitance region including a dielectric region disposed in an undercut directly underlying the intrinsic base layer; and forming an emitter layer overlying the intrinsic base layer.
摘要:
Structure and method are provided for forming a bipolar transistor. As disclosed, an intrinsic base layer is provided overlying a collector layer. A low-capacitance region is disposed laterally adjacent the collector layer. The low-capacitance region includes at least one of a dielectric region and a void disposed in an undercut underlying the intrinsic base layer. An emitter layer overlies the intrinsic base layer, and a raised extrinsic base layer overlies the intrinsic base layer.
摘要:
Structure and a method are provided for making a bipolar transistor, the bipolar transistor including a collector, an intrinsic base overlying the collector, an emitter overlying the intrinsic base, and an extrinsic base spaced from the emitter by a gap, the gap including at least one of an air gap and a vacuum void.
摘要:
Structure and a method are provided for making a bipolar transistor, the bipolar transistor including a collector, an intrinsic base overlying the collector, an emitter overlying the intrinsic base, and an extrinsic base spaced from the emitter by a gap, the gap including at least one of an air gap and a vacuum void.
摘要:
Disclosed are embodiments of a method of fabricating a bipolar transistor with a self-aligned raised extrinsic base. In the method a dielectric pad is formed on a substrate with a minimum dimension capable of being produced using current state-of-the-are lithographic patterning. An opening is aligned above the dielectric pad and etched through an isolation oxide layer to an extrinsic base layer. The opening is equal to or greater in size than the dielectric pad. Another smaller opening is etched through the extrinsic base layer to the dielectric pad. A multi-step etching process is used to selectively remove the extrinsic base layer from the surfaces of the dielectric pad and then to selectively remove the dielectric pad. An emitter is then formed in the resulting trench. The resulting transistor structure has a distance between the edge of the lower section of the emitter and the edge of the extrinsic base that is minimized, thereby, reducing resistance.
摘要:
A structure and method where C is incorporated into the collector region of a heterojunction bipolar device by a method which does not include C ion implantation are provided. In the present invention, C is incorporated into the collector by epitaxy in a perimeter trench etched into the collector region to better control the carbon profile and location. The trench is formed by etching the collector region using the trench isolation regions and a patterned layer over the center part of the collector as masks. Then, Si:C is grown using selective epitaxy inside the trench to form a Si:C region with sharp and well-defined edges. The depth, width and C content can be optimized to control and tailor the collector implant diffusion and to reduce the perimeter component of parasitic CCB.
摘要:
A field effect transistor is provided which includes a contiguous single-crystal semiconductor region in which a source region, a channel region and a drain region are disposed. The channel region has an edge in common with the source region as a source edge, and the channel region further has an edge in common with the drain region as a drain edge. A gate conductor overlies the channel region. The field effect transistor further includes a structure which applies a stress at a first magnitude to only one of the source edge and the drain edge while applying the stress at no greater than a second magnitude to another one of the source edge and the drain edge, wherein the second magnitude has a value ranging from zero to about half the first magnitude. In a particular embodiment, the stress is applied at the first magnitude to the source edge while the zero or lower magnitude stress is applied to the drain edge. In another embodiment, the stress is applied at the first magnitude to the drain edge while the zero or lower magnitude stress is applied to the drain edge.