摘要:
There are provided a low-cost positive electrode for an alkaline storage battery which retains an excellent current collectivity over a long period of time and a low-cost alkaline storage battery which retains an excellent charge/discharge efficiency over a long period of time. A positive electrode for an alkaline storage battery according to the present invention has a positive electrode substrate including a resin skeleton made of a resin and having a three-dimensional network structure and a nickel coating layer made of nickel and coating the resin skeleton and also having a void portion in which a plurality of pores are coupled in three dimensions and a positive electrode active material containing nickel hydroxide particles and filled in the void portion of the positive electrode substrate. Among them, the nickel coating layer has an average thickness of not less than 0.5 μm and not more than 5 μm. The proportion of the nickel coating layer to the positive electrode substrate is not less than 30 wt % and not more than 80 wt %. The filling amount of the positive electrode active material is not less than 3 times and not more than 10 times the weight of the positive electrode substrate.
摘要:
There are provided a positive electrode active material for an alkaline storage battery, a positive electrode for an alkaline storage battery, and an alkaline storage battery each of which has an excellent output characteristics and also has an excellent self-discharge characteristic and an excellent cycle lifetime characteristic. The positive electrode active material for an alkaline storage battery according to the present invention has nickel hydroxide particles each containing at least magnesium in a solid solution state and a cobalt compound layer coating the surface of each of the nickel hydroxide particles. Among them, the cobalt compound layer contains cobalt having an average valence of not less than 2.6 and not more than 3.0 and also contains sodium at a proportion of less than 0.10 wt % to the total weight of the cobalt compound layer. The positive electrode active material for an alkaline storage battery according to the present invention has a conductivity smaller than 1.0×10−5 S/cm in a state pressurized at 39.2 MPa.
摘要:
A battery is adapted such that a nickel hydroxide particle group constituted of a number of nickel hydroxide particles filled in a void part of a positive electrode substrate contains, at a ratio of 15 wt % or less, small-diameter nickel hydroxide particles each having a particle diameter of 5 μm or less. The positive electrode substrate is configured such that a front-surface-side nickel layer and a back-surface-side nickel layer are made larger in thickness than a middle nickel layer, and an average thickness B of either the front-surface-side nickel layer or the back-surface-side nickel layer, which is thicker one, and an average thickness C of the middle nickel layer satisfy a relation of C/B≧0.6.
摘要:
There are provided a positive electrode active material for an alkaline storage battery, a positive electrode for an alkaline storage battery, and an alkaline storage battery each of which has an excellent output characteristics and also has an excellent self-discharge characteristic and an excellent cycle lifetime characteristic. The positive electrode active material for an alkaline storage battery according to the present invention has nickel hydroxide particles each containing at least magnesium in a solid solution state and a cobalt compound layer coating the surface of each of the nickel hydroxide particles. Among them, the cobalt compound layer contains cobalt having an average valence of not less than 2.6 and not more than 3.0 and also contains sodium at a proportion of less than 0.10 wt % to the total weight of the cobalt compound layer. The positive electrode active material for an alkaline storage battery according to the present invention has a conductivity smaller than 1.0×10−5 S/cm in a state pressurized at 39.2 MPa.
摘要:
There are provided a positive electrode active material for an alkaline storage battery, a positive electrode for an alkaline storage battery, and an alkaline storage battery each of which has an excellent output characteristics and also has an excellent self-discharge characteristic and an excellent cycle lifetime characteristic. The positive electrode active material for an alkaline storage battery according to the present invention has nickel hydroxide particles each containing at least magnesium in a solid solution state and a cobalt compound layer coating the surface of each of the nickel hydroxide particles. Among them, the cobalt compound layer contains cobalt having an average valence of not less than 2.6 and not more than 3.0 and also contains sodium at a proportion of less than 0.10 wt % to the total weight of the cobalt compound layer. The positive electrode active material for an alkaline storage battery according to the present invention has a conductivity smaller than 1.0×10−5 S/cm in a state pressurized at 39.2 MPa.
摘要:
A battery is adapted such that a nickel hydroxide particle group constituted of a number of nickel hydroxide particles filled in a void part of a positive electrode substrate contains, at a ratio of 15 wt % or less, small-diameter nickel hydroxide particles each having a particle diameter of 5 μm or less. The positive electrode substrate is configured such that a front-surface-side nickel layer and a back-surface-side nickel layer are made larger in thickness than a middle nickel layer, and an average thickness B of either the front-surface-side nickel layer or the back-surface-side nickel layer, which is thicker one, and an average thickness C of the middle nickel layer satisfy a relation of C/B≧0.6.
摘要:
Provided are a III/V group nitride semiconductor causing an oxidation-reduction reaction at a high photoconversion efficiency by irradiation of light, a photocatalytic semiconductor device, a photocatalytic oxidation-reduction reaction apparatus, and an execution process of a photoelectrochemical reaction.In the III/V group nitride semiconductor, the full width at half maximum of an X-ray rocking curve on a catalytic reaction surface thereof is 400 arcsec or less, and a carrier density in a surface layer portion having the catalytic reaction surface is 1.5×1016 cm−3 or more, but 3.0×1018 cm−3 or less. The photocatalytic semiconductor device has the III/V group nitride semiconductor laminated on a substrate. In the photocatalytic oxidation-reduction reaction apparatus, one electrode of a pair of electrodes for electrolysis, which are electrically connected to each other in a state brought into contact with an electrolyte, is composed of the III/V group nitride semiconductor, and a catalytic reaction surface making up the III/V group nitride semiconductor is irradiated with light, thereby causing an oxidation reaction or reduction reaction on the catalytic reaction surface.
摘要:
Nonlinear optical thin-films are disclosed. The nonlinear optical thin-film is comprised of a substrate, superlattice thin films formed separated on the surface of the substrate and a cover thin film of an insulating material or a semiconductor which covers the surface of the substrate on which the superlattice thin films are formed. Each superlattice thin film is formed by depositing two kinds of semiconductors having different band-gap energies alternatively.
摘要:
A process (I), for producing a pressure-sensitive electroconductive sheet by (A), forming conductive circuits or electrodes in a flexible porous substrate and (B), applying, followed by curing a pressure-sensitive conductive paste to either or both sides of the substrate to form a pressure-sensitive conductive layer; and a process (II) for producing a pressure-sensitive electroconductive sheet by (A), forming conductive circuits or electrodes in a flexible porous subhstrate, (B), subsequently applying, followed by curing, a pressure-sensitive conductive paste to either side of the substrate to form a pressure-sensitive conductive layer, and (C), applying, followed by curing, insulating silicone rubber to the side of the substrate on which the pressure-sensitive conductive layer is not formed to form an insulating silicone rubber layer.
摘要:
To provide a method of controlling charge and discharge of a secondary battery for automatic guided vehicle that can decide the timing of refresh charge and discharge accurately and minimize the frequency of refresh charge and discharge. The method of controlling charge and discharge of a secondary battery for automatic guided vehicle comprises a first discharge step of making the secondary battery drive an automatic guided vehicle and discharge electricity with a predetermined amount; a voltage measurement step of measuring a discharge end voltage of the secondary battery at the completion of the first discharge step; and a charge step of performing a first charge step of charging the secondary battery incompletely at a first charging current value when the discharge end voltage is higher than a preset minimum voltage, and performing a second charge step of discharging the secondary battery fully and then charging the secondary battery fully at a second charging current value smaller than the first charging current value when the discharge end voltage equals the preset minimum voltage or less.