Abstract:
In order to obtain optimum irradiation conditions of an electron beam according to the material and structure of a circuit pattern to be inspected and the kind of a failure to be detected and inspect under the optimum conditions without delay of the inspection time, an inspection device for irradiating the electron beam 19 to the sample board 9 which is a sample, detecting generated secondary electrons by the detector 7, storing obtained signals sequentially in the storage, comparing the same pattern stored in the storage by the comparison calculation unit, and extracting a failure by comparing the predetermined threshold value with the comparison signal by the failure decision unit is provided, wherein the optimum value of the irradiation energy is stored in the data base inside the device beforehand according to the structure of a sample and a recommended value of the irradiation energy suited to inspection can be searched for by inputting or selecting the irradiation energy by a user or inputting information regarding the structure of an article to be inspected.
Abstract:
Secondary electrons and back scattered electrons generated by irradiating a wafer to be inspected such as a semiconductor wafer with a charged particle beam are detected by a detector. A signal proportional to the number of detected electrons is generated, and an inspection image is formed on the basis of the signal. On the other hand, in consideration of a current value and irradiation energy of a charged particle beam, an electric field on the surface of the inspection wafer, emission efficiency of the secondary electrons and back scattered electrons, and the like, an electric resistance and an electric capacity are determined so as to coincide with those in the inspection image. In a state where a difference between a resistance value in a normal portion and a resistance value in a defective portion is sufficiently increased by using the charging generated by the irradiation of electron beams, an inspection is conducted to thereby detect a defect.
Abstract:
Heights of a sample are calibrated by setting a calibrating substrate on a stage and then irradiating a charged particle beam onto standard marks provided on at least two kinds of surfaces having different substrate heights. Secondary charged particles produced from said irradiated standard marks on the substrate are and detected and a surface height of the irradiated portion of the substrate measured. The difference in height between the standard marks is set to be in a range containing an extent, over the entire sample, to which the height of the sample varies due to warping.
Abstract:
A circuit pattern inspection method and an apparatus therefor, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined charged state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is radiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
Abstract:
An object of the present invention is to provide an inspection method using an electron beam and an inspection apparatus therefor, which are capable of enhancing the resolution, improving the inspection speed and reliability, and realizing miniaturization the apparatus. To achieve the above object, according to the present invention, there is provided an inspection method using an electron beam, including the steps of; applying a voltage on a sample via a sample stage; converging an electron beam on the sample; scanning the sample with the converged electron beam and simultaneously, continuously moving the sample stage; detecting charged particles generated from the sample; and detecting a defect on the sample on the basis of the detected charged particles; wherein a distance between the sample and the shield frame is determined on the basis of a critical discharge between the sample stage and the shield frame; coils of at least hexapoles for correcting the shape of an electron beam are provided; the electron beam is deflected for blanking during movement of the sample with the crossover of the electron beam taken as a fulcrum of blanking; or the magnitude of the voltage applied to the sample may be determined depending on the kind of sample.
Abstract:
A circuit pattern inspection method and an apparatus therefor, in which the whole of a portion to be inspected of a sample to be inspected is made to be in a predetermined charged state, the portion to be inspected is irradiated with an image-forming high-density electron beam while scanning the electron beam, secondary charged particles are detected at a portion irradiated with the electron beam after a predetermined period of time from an instance when the electron beam is radiated, an image is formed on the basis of the thus detected secondary charged particle signal, and the portion to be inspected is inspected by using the thus formed image.
Abstract:
A workpiece holder for holding a workpiece, which is used for an electron beam application apparatus for processing a workpiece by irradiating the surface of said workpiece with an electron beam, or observing the surface state of a workpiece by detecting secondary electrons produced from the workpiece by irradiation of the workpiece with an electron beam, includes a positioning portion which comes closer to an end portion of said workpiece when said workpiece holder holds the workpiece, thereby positioning the workpiece, in which the surface height of the end portion of the workpiece is nearly equal to the height of said positioning portion.
Abstract:
An electron beam (area beam) having a fixed area is irradiated onto the surface of a semiconductor sample, and reflected electrons from the sample surface are imaged by the imaging lens, and images of a plurality of regions of the surface of the semiconductor sample are obtained and stored in the image storage unit, and the stored images of the plurality of regions are compared with each other, and the existence of a defect in the regions and the defect position are measured. By doing this, in an apparatus for testing a pattern defect of the same design, foreign substances, and residuals on a wafer in the manufacturing process of a semiconductor apparatus by an electron beam, speeding-up of the test can be realized.
Abstract:
An electron beam (area beam) having a fixed area is irradiated onto the surface of a semiconductor sample, and reflected electrons from the sample surface are imaged by the imaging lens, and images of a plurality of regions of the surface of the semiconductor sample are obtained and stored in the image storage unit, and the stored images of the plurality of regions are compared with each other, and the existence of a defect in the regions and the defect position are measured. By doing this, in an apparatus for testing a pattern defect of the same design, foreign substances, and residuals on a wafer in the manufacturing process of a semiconductor apparatus by an electron beam, speeding-up of the test can be realized.
Abstract:
A semiconductor fabricating apparatus for fabricating a semiconductor wafer includes a processing chamber, in which a workpiece is processed by irradiating the surface of said workpiece with an electron beam, a workpiece holder including a positioning portion for positioning the workpiece. The surface height of an end portion of the workpiece is nearly equal to the height of the positioning portion when the workpiece carried in the processing chamber is held on the workpiece holder.