Abstract:
An electron beam (4) to be irradiated onto a sample (10) is two-dimensionally scanned by a scanning coil (9), and secondary electrons generated from the sample (10) by the scanning are detected by a secondary electron detector (13). A deflection coil (15) for image shifting is used for electrically deflecting the primary electron beam to shift a field of view for image shift in an arbitrary direction by an arbitrary amount. By the image shift, the primary electron beam (4) to be irradiated onto the sample is energy dispersed to degrade the resolution. However, an EnullB field producer (30) for dispersion control gives the primary electron beam energy dispersion in the opposite direction and having the equal magnitude. Therefore, the energy dispersion produced in the primary electron beam by the image shift is automatically corrected.
Abstract:
The invention provides a sample observation method capable of understanding the three-dimensional shape of a sample in a wider range. The observation method of the invention calculates heights (height differences) in the whole domain of an image, from plural sheets of images of different field-of-view angles, being in focus over the whole image, attained by means of the focal depth expanding function to thereby create a map (Z map) of the height information by each pixel, and displays a three-dimensional image as a bird's-eye view. The method also displays to superpose a Z map attained from image signals reflecting the surface structure on a Z map attained from image signals reflecting the composition information with different colors, which makes it possible to clearly understand the spatial distribution of a substance of unique composition inside the sample.
Abstract:
Image observation at high resolution is realized and irregularity information of a sample is obtained. The reflected electrons 12a emitted in a direction at a small angle with the surface of the sample 8 are detected by the detectors 10a and 10b arranged on the side of the electron source 1 of the magnetic field leakage type object lens 7 and a sample image is formed. Irregularity information of the sample is obtained from the effects of light and shade appearing in the sample image.
Abstract:
A method and charged particle beam column are presented for directing a primary charged particle beam onto a sample. The primary charged particle beam, propagating along an initial axis of beam propagation towards a focusing assembly, passes through a beam shaper, that affects the cross section of the primary charged particle beam to compensate for aberrations of focusing caused by astigmatism effect of a focusing field produced by an objective lens arrangement of the focusing assembly, and then passes through a beam axis alignment system, that aligns the axis of the primary charged particle beam with respect to the optical axis of the objective lens arrangement.
Abstract:
A width-measurement method of reducing or eliminating an error in measurement of a width of an object on a sample resulting from the dimension of the beam diameter, wherein a width-measured value of the object to be width-measured which has been obtained on the basis of a secondary signal obtained from secondary particles emitted from the sample having thereon the object to be width-measured is corrected with a value with respect to a dimension value of a beam diameter.
Abstract:
Inspection method, apparatus, and system for a circuit pattern, in which when various conditions which are necessary in case of inspecting a fine circuit pattern by using an image formed by irradiating white light, a laser beam, or a charged particle beam are set, its operating efficiency can be improved. An inspection target region of an inspection-subject substrate is displayed, and a designated map picture plane and an image of an optical microscope or an electron beam microscope of a designated region are displayed in parallel, thereby enabling a defect distribution and a defect image to be simultaneously seen. Item names of inspecting conditions and a picture plane to display, input, or instruct the contents of the inspecting conditions are integrated, those contents are overlapped to the picture plane and layer-displayed, and all of the item names are displayed in parallel in a tab format in the upper portion of the picture plane of the contents. When a desired item name is clicked, the picture plane is switched and the contents corresponding to the clicked item name are displayed.
Abstract:
The secondary electrons, from a sample placed within a lens magnetic field, are detected by a plurality of secondary electron detectors, thereby effectively observing a concave/convex in a sample surface. In a scanning electronic beam apparatus having upper and lower electrodes built in a single-pole magnetic-field type lens to place a sample within a lens magnetic field, a negative voltage is applied to the sample and the lower electrode opposed thereto while a zero or positive voltage is applied to the upper electrode, whereby an electric field for suppressing the helical motion of a secondary electron given off from the sample due to electron-beam irradiation is caused within a region of from the sample to an objective lens magnetic field space closer to an electron source. The secondary electron is detected by a division-type MCP or a plurality of scintillator-type secondary electron detectors arranged sandwiching the optical axis.
Abstract:
The invention relates to a SEM with an electrostatic objective lens 14, 16 and a detector 6, 8 for through-the-lens detection of electrons 24. In accordance with the invention a voltage contrast (voltage range of the order of magnitude of from 1 to 10 V) is achieved by subdividing this detector surface 9 into separate regions, preferably concentric annular regions 36 and 38, and by electronically combining the signals from these regions.
Abstract:
An inspection system includes a SEM visual inspection apparatus for detecting a defect in a semiconductor sample in steps of manufacturing a semiconductor device and a review apparatus for observing, at a high resolution, the defect in the semiconductor sample detected by the SEM visual inspection apparatus. The system has a function of transmitting an alignment dictionary image as one of alignment parameters to be set by the SEM visual inspection apparatus using an inspection recipe to the review apparatus.
Abstract:
A method and apparatus suitable for determining the concavity and convexity of line and space patterns formed on a sample. A profile is formed based on a charged-particle beam scan, the profile having a peak. When one foot portion of the peak converges more gradually than the other foot portion, a portion of the sample corresponding to the one foot portion is determined to be a convex portion. Alternatively, when one foot portion of the peak converges more steeply than the other foot portion, a portion of the sample corresponding to the one foot portion is determined to be a concave portion.