Abstract:
A semiconductor device includes an active region famed in a semiconductor layer formed on an insulating film famed in a semiconductor substrate and having a first extension portion extending in a first direction and a second extension portion extending in a second direction intersecting with the first direction, a first diffusion layer electrode of a first conductivity type provided in the first extension portion, second and third diffusion layer electrodes of a second conductivity type provided in the second extension portion so as to interpose a first connecting portion connecting the first extension portion and the second extension portion, a first gate electrode famed on the first extension portion between the first diffusion layer electrode and the first connecting portion through an insulating film famed on the semiconductor layer, and a second gate electrode famed on the first connecting portion through the insulating film famed on the semiconductor layer.
Abstract:
To realize a focused-ion-beam machining apparatus capable of machining a thin sample with a wide area and a uniform film thickness and a needle-like sample with a sharp tip, in a focused-ion-beam machining apparatus including: an ion source (1); an electronic lens (3) focusing an ion beam extracted from the ion source (1) and irradiating the ion beam to a sample (5); and a sample holder (13) holding the sample (5), the sample holder (13) is provided with a shield electrode (7) arranged in a manner such as to cover the sample (5), and the sample (5) and the shield electrode (7) are insulated from each other in a manner such that voltages can be applied to them separately from each other.
Abstract:
A quantum bit array including a plurality of quantum dots capable of confining a quantum bit and a plurality of gate electrodes used to control of the plurality of quantum dots, and a control device controlling a plurality of quantum bits using the plurality of gate electrodes, the quantum bit array includes a storage region including a plurality of quantum dots storing the quantum bit, and an operation region including a plurality of quantum dots capable of applying a quantum gate operation of changing a spin state to the confined quantum bit, the stored quantum bit is moved from the storage region to the operation region by a shuttle operation of moving the quantum bit with a Coulomb force generated by using the plurality of gate electrodes, and the quantum gate operation of changing the spin state to the quantum bit is performed in the operation region.
Abstract:
The first layer includes a first gate electrode array disposed in the first direction to control the qubits of the qubit string, and a second gate electrode array disposed in the first direction to control the inter-qubit interaction of the interaction string. The second layer includes a third gate electrode array disposed in the second direction, and a fourth gate electrode array disposed in the second direction adjacently to the third gate electrode array. The third and the fourth gate electrode arrays control a part of the multiple qubits, and a part of the multiple inter-qubit interactions, respectively.
Abstract:
One preferred aspect of the invention is a quantum computer of a semiconductor, including: a semiconductor crystalline substrate; a gate electrode array structure formed on a surface of the semiconductor crystalline substrate; and a reservoir unit that is a carrier supply unit, in which a classic potential barrier is formed in the semiconductor crystalline substrate by controlling an applied voltage to the gate electrode array structure, and a charge supplied from the reservoir unit is transported into the classic potential barrier.
Abstract:
A quantum bit array comprises a semiconductor layer, an insulating layer arranged on the semiconductor layer, and a plurality of first gate electrodes which are arranged on the insulating layer. The plurality of first gate electrodes are each configured to trap an electron having a predetermined spin state in the semiconductor layer through application of a voltage. The quantum bit array comprises means for causing, in a case where the spin state of the electron is to be changed, a current for forming a magnetic field that acts on the electron to flow through at least one of the plurality of first gate electrodes in an extending direction of the at least one of the plurality of first gate electrodes.