Abstract:
In a nonvolatile semiconductor memory device, there is provided a technique which promotes microfabrication by reducing a thickness of the device as suppressing an OFF current of a polysilicon diode which is a selective element. A polysilicon layer to which an impurity is doped at low concentration and which becomes an electric-field relaxation layer of the polysilicon diode which is a selective element of a resistance variable memory is formed so as to be divided into two or more layers such as polysilicon layers. In this manner, it is suppressed to form the crystal grain boundaries thoroughly penetrating between an n-type polysilicon layer and a p-type polysilicon layer in the electric-field relaxation layer, and therefore, it is prevented to generate a leakage current flowing through the crystal grain boundaries in application of a reverse-bias voltage without increasing a height of the polysilicon diode.
Abstract:
An object of the present invention is to reduce a pitch of selection transistors to select two directions in a semiconductor substrate surface of a three-dimensional vertical semiconductor storage device to reduce a dimension in the semiconductor substrate surface.Gates of selection transistors extending in the same direction are formed by a different process for every other gate, so that the thickness of channel semiconductor layers of the selection transistors can be reduced to almost the same thickness of the thickness of an inversion layer while the channel semiconductor layers and an electrode are contacted over a wide area. On/off control can be executed independently on the channel semiconductor layers formed at two sidewalls of the gates of the selection transistors formed at a pitch of 2F. As a result, dimensions of two directions in the semiconductor substrate surface can be set to 2F without generating double selection.
Abstract:
A vertical chain memory includes two-layer select transistors having first select transistors which are vertical transistors arranged in a matrix, and second select transistors which are vertical transistors formed on the respective first select transistors, and a plurality of memory cells connected in series on the two-layer select transistors. With this configuration, the adjacent select transistors are prevented from being selected by respective shared gates, the plurality of two-layer select transistors can be selected, independently, and a storage capacity of a non-volatile storage device is prevented from being reduced.
Abstract:
In order to form a phase change thin film being flat in a nanometer level and having a good coverage, which is essential for realizing a three-dimensional ultra-high integrated phase change memory, an equipment for vapor phase growth of a phase change thin film is provided which form a phase change thin film at low temperature while the film is being kept in a completely amorphous state. A structure is provided in which an ammonia cracker is connected to a reactor of the equipment for vapor phase growth for a nitrogen radical obtained by decomposing ammonia gas. Consequently, low temperature decomposition of metal organic precursor and film formation on a substrate surface are realized. With the use of this equipment, it is possible to realize a completely amorphous film which has a flat surface at a low temperature of 135° C. using an amine complex as a Ge precursor.
Abstract:
When a thin channel semiconductor layer formed on a side wall of a stacked film in which insulating films and gate electrodes are alternately stacked together is removed on the stacked film, a contact resistance between a vertical transistor including the channel semiconductor layer and the gate electrode, and a bit line formed on the stacked film is prevented from rising. As its means, a conductive layer electrically connected to the channel semiconductor layer is disposed immediately above the stacked film.