摘要:
The metallization system of complex semiconductor devices may be evaluated in terms of mechanical integrity on the basis of a measurement system and measurement procedures in which individual contact elements, such as metal pillars or solder bumps, are mechanically stimulated, while the response of the metallization system, for instance in the form of directly measured forces, is determined in order to quantitatively evaluate mechanical status of the metallization system. In this manner, the complex material systems and the mutual interactions thereof may be efficiently assessed.
摘要:
The metallization system of complex semiconductor devices may be evaluated in terms of mechanical integrity on the basis of a measurement system and measurement procedures in which individual contact elements, such as metal pillars or solder bumps, are mechanically stimulated, while the response of the metallization system, for instance in the form of directly measured forces, is determined in order to quantitatively evaluate mechanical status of the metallization system. In this manner, the complex material systems and the mutual interactions thereof may be efficiently assessed.
摘要:
In a semiconductor device or test structure, appropriate heating elements, for instance in the form of resistive structures, are implemented so as to obtain superior area coverage, thereby enabling a precise evaluation of the thermal conditions within a complex semiconductor device. In particular, the device internal heating elements may allow the evaluation of hot spots and the response of a complex metallization system to specific temperature profiles, in particular at critical areas, such as edge regions in which mechanical stress forces are typically highest in contact regimes in which the package substrate and the metallization system are directly connected.
摘要:
In a semiconductor device or test structure, appropriate heating elements, for instance in the form of resistive structures, are implemented so as to obtain superior area coverage, thereby enabling a precise evaluation of the thermal conditions within a complex semiconductor device. In particular, the device internal heating elements may allow the evaluation of hot spots and the response of a complex metallization system to specific temperature profiles, in particular at critical areas, such as edge regions in which mechanical stress forces are typically highest in contact regimes in which the package substrate and the metallization system are directly connected.
摘要:
By forming a large metal pad and removing any excess material thereof, a pronounced recessed surface topography may be obtained, which may also affect the further formation of a metallization layer of a semiconductor device, thereby increasing the probability of maintaining metal residues above the recessed surface topography. Consequently, by providing test metal lines in the area of the recessed surface topography, the performance of a respective CMP process may be estimated with increased efficiency.
摘要:
By forming a large metal pad and removing any excess material thereof, a pronounced recessed surface topography may be obtained, which may also affect the further formation of a metallization layer of a semiconductor device, thereby increasing the probability of maintaining metal residues above the recessed surface topography. Consequently, by providing test metal lines in the area of the recessed surface topography, the performance of a respective CMP process may be estimated with increased efficiency.
摘要:
A test structure or a circuit element acting temporarily as a test structure may be provided within the die region of sophisticated semiconductor devices, while probe pads may be located in the frame in order to not unduly consume valuable die area. The electrical connection between the test structure and the probe pads may be established by a conductive path including a buried portion, which extends from the die region into the frame below a die seal, thereby maintaining the electrical and mechanical characteristics of the die seal. Hence, enhanced availability of electrical measurement data and superior authenticity of the data may be accomplished, wherein the measurement data may be obtained during the production process.
摘要:
By dividing a single chip area into individual sub-areas, a thermally induced stress in each of the sub-areas may be reduced during operation of complex integrated circuits, thereby enhancing the overall reliability of complex metallization systems comprising low-k dielectric materials or ULK material. Consequently, a high number of stacked metallization layers in combination with increased lateral dimensions of the semiconductor chip may be used compared to conventional strategies.
摘要:
In a reflow process for connecting a semiconductor die and a package substrate, the temperature gradient and thus the thermally induced mechanical forces in a sensitive metallization system of the semiconductor die may be reduced during the cooling phase. To this end, one or more heating intervals may be introduced into the cooling phase, thereby efficiently reducing the temperature difference. In other cases, the central region may additionally be cooled by providing appropriate locally restricted mechanisms, such as a locally restricted gas flow and the like. Consequently, desired short overall process times may be obtain without contributing to increased yield losses when processing sophisticated metallization systems on the basis of a lead-free contact regime.
摘要:
In a reflow process for connecting a semiconductor die and a package substrate, the temperature gradient and thus the thermally induced mechanical forces in a sensitive metallization system of the semiconductor die may be reduced during the cooling phase. To this end, one or more heating intervals may be introduced into the cooling phase, thereby efficiently reducing the temperature difference. In other cases, the central region may additionally be cooled by providing appropriate locally restricted mechanisms, such as a locally restricted gas flow and the like. Consequently, desired short overall process times may be obtain without contributing to increased yield losses when processing sophisticated metallization systems on the basis of a lead-free contact regime.