Abstract:
A system and method are disclosed for a morphable pad and display configured for tactile control. The system comprises a display for displaying a user interface comprising a layout of vehicle control features. The display is configured to highlight a portion of the layout associated with a received highlight input, and to update the layout based on a received selection input. A morphable pad is connected to the display and comprises an array of switches. Each switch is configured to receive highlight input and selection input. The switches are also configured to adjust in tactile feel to match the layout, and to reconfigure in tactile feel responsive to a change in the layout.
Abstract:
A system and method are disclosed for a morphable pad and display configured for tactile control. The system comprises a display for displaying a user interface comprising a layout of vehicle control features. The display is configured to highlight a portion of the layout associated with a received highlight input, and to update the layout based on a received selection input. A morphable pad is connected to the display and comprises an array of switches. Each switch is configured to receive highlight input and selection input. The switches are also configured to adjust in tactile feel to match the layout, and to reconfigure in tactile feel responsive to a change in the layout.
Abstract:
A system and method are disclosed for a morphable pad and display configured for tactile control. The system comprises a display for displaying a user interface comprising a layout of vehicle control features. The display is configured to highlight a portion of the layout associated with a received highlight input, and to update the layout based on a received selection input. A morphable pad is connected to the display and comprises an array of switches. Each switch is configured to receive highlight input and selection input. The switches are also configured to adjust in tactile feel to match the layout, and to reconfigure in tactile feel responsive to a change in the layout.
Abstract:
A vehicle includes a control system, a selector, and a display. The selector is operable in one of a first selection mode and a second selection mode for selecting respective ones of a first driving mode and a second driving mode for the vehicle. The control system is configured to detect an improper vehicular condition for the second driving mode. When the vehicle is in the first driving mode and the selector is transitioned from the first selection mode to the second selection mode during the occurrence of the improper vehicular condition for the second driving mode, the control system is configured to facilitate display of a warning message on the warning display indicating the improper vehicular condition for the second driving mode and inhibit the vehicle from transitioning from the first driving mode to the second driving mode. A method is also provided.
Abstract:
A system for preventing accidents includes an eye gaze detector for receiving an eye gaze vector from a driver. The system additionally comprises a proximity sensor for detecting locations of nearby objects and their velocities. A risk is determined based on the nearby object location and velocity. Additionally, the driver's knowledge of vehicle circumstances is determined based on the nearby object location and velocity as well as the eye gaze location. Responsive to the driver's knowledge and the risk, an alert is activated.
Abstract:
A vehicle includes a control system, a selector, and a display. The selector is operable in one of a first selection mode and a second selection mode for selecting respective ones of a first driving mode and a second driving mode for the vehicle. The control system is configured to detect an improper vehicular condition for the second driving mode. When the vehicle is in the first driving mode and the selector is transitioned from the first selection mode to the second selection mode during the occurrence of the improper vehicular condition for the second driving mode, the control system is configured to facilitate display of a warning message on the warning display indicating the improper vehicular condition for the second driving mode and inhibit the vehicle from transitioning from the first driving mode to the second driving mode. A method is also provided.
Abstract:
A system for preventing accidents includes an eye gaze detector for receiving an eye gaze vector from a driver. The system additionally comprises a proximity sensor for detecting locations of nearby objects and their velocities. A risk is determined based on the nearby object location and velocity. Additionally, the driver's knowledge of vehicle circumstances is determined based on the nearby object location and velocity as well as the eye gaze location. Responsive to the driver's knowledge and the risk, an alert is activated.
Abstract:
A system and method are disclosed for a morphable pad and display configured for tactile control. The system comprises a display for displaying a user interface comprising a layout of vehicle control features. The display is configured to highlight a portion of the layout associated with a received highlight input, and to update the layout based on a received selection input. A morphable pad is connected to the display and comprises an array of switches. Each switch is configured to receive highlight input and selection input. The switches are also configured to adjust in tactile feel to match the layout, and to reconfigure in tactile feel responsive to a change in the layout.