摘要:
An HeNB-GW (120) is applied to a network that comprises a plurality of CSG cells, and comprises: an access-permitted CSG-ID list storing section (425) having a CSG identification of a CSG cell that a mobile terminal (140) is permitted to access stored therein; an HeNB information storing section having a PCI corresponding to the CSG cell identification stored therein; a location information receiving section (412) for receiving information identifying the location of the mobile terminal (140); a PCI mapping section (420) that reads at least one CSG cell accessible to the mobile terminal (140) from the access-permitted CSG-ID list storing section (425), reads, from the HeNB information storing section 430, a PCI of an adjacent CSG cell among the read CSG cells within a predetermined range of the CSG cell in which the mobile terminal (140) is present, and generates an accessible PCI list to the mobile terminal (140); and an HeNB managing section 410 for providing the mobile terminal (140) with the accessible PCI list. Therefore, a base station controller with which a mobile terminal can immediately be connected to a CSG cell that the mobile terminal is permitted to access may be provided.
摘要:
A wireless communication terminal apparatus and wireless communication method, wherein the time necessary for implementation of handover is reduced without increasing the complexity of the configuration of the wireless communication terminal apparatus. A gap confirmation unit (105) determines to start the UE-initiated GP at the current DRX cycle in cases when the extended DRX active period is shorter than the UE-initiated GP start offset, and determines to start the UE-initiated GP at the next DRX cycle in cases when the extended DRX active period is longer than the UE-initiated GP start offset. A UE-initiated GP configuration unit (106) generates a gap pattern at the determined DRX cycle.
摘要:
In a mobile communication system, a handover of a terminal device (MT) from a macrocell base station (eNB) to a small cell base station (HeNB) is controlled via a host device (MME or HeNB-GW). Physical cell ID deployment map information (PCI deployment map information), which includes at least information (PCI/CGI map information) indicating the correspondences between physical cell IDs and unique cell IDs of CSG cells for which access is granted, is generated in the host device (MME or HeNB-GW). When the terminal device measures the reception quality for surrounding CSG cells for handover control to any of the CSG cells, the terminal device uses the PCI deployment map information to generate a measurement result report. Thus, a service interruption caused by handover control to an inaccessible small cell can be avoided, and the wait time for handover control can be reduced.
摘要:
A wireless communication terminal apparatus and wireless communication method, wherein the time necessary for implementation of handover is reduced without increasing the complexity of the configuration of the wireless communication terminal apparatus. A gap confirmation unit (105) determines to start the UE-initiated GP at the current DRX cycle in cases when the extended DRX active period is shorter than the UE-initiated GP start offset, and determines to start the UE-initiated GP at the next DRX cycle in cases when the extended DRX active period is longer than the UE-initiated GP start offset. A UE-initiated GP configuration unit (106) generates a gap pattern at the determined DRX cycle.
摘要:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
摘要:
The invention provides a wireless communication terminal device and a gap allotting method capable of completing a measuring process at high speed and reducing the number of retransmissions. Upon determining that the average number of retransmissions exceeds the parameter for the average number of retransmissions in gap length change judging unit (115), a gap changing unit (125) changes the currently set gap length using a gap off duration “G_Off_Duration”. A gap pattern setting unit (120) sets a gap pattern based on a gap parameter or the changed gap length, and a measuring unit (130) creates a gap by using the set gap pattern and measures the reference signal in a physical layer input during the gap.
摘要:
Disclosed is a gap support measuring method which performs autonomous gap allocation without lowering the data transfer rate or the throughput. ST301 acquires various kinds of parameters decided by a network so as to execute a gap support measurement task. ST302 checks the current time and starts the gap support measurement task when the current time has become Ts. ST303 judges whether CQI measured by a terminal is lower than a threshold value. ST304 judges whether the threshold value should be updated. ST306 decides the gap length according to the remaining gap length and the remaining time and performs measurement within the gap. ST307 judges whether the measurement is complete. ST308 checks whether the total of the gaps exceed the entire gap length Tg.
摘要:
A wireless communication terminal apparatus and a wireless communication method wherein a measurement operation, which is suitable for a long DRX/DTX interval, is controlled without providing any new signaling between a terminal and a base station. When a DRX threshold terminal status determining part (107) determines that a set a DRX/DTX interval is longer than a DRX threshold, a measurement process deciding part (108) instructs a measurement implementing part (109) to use information for cell reselection. The measurement implementing part (109) then uses the information for cell reselection to perform a measurement. When a result of the measurement satisfies a cell reselection requirement, a measurement report transmission process deciding part (110) decides a transmission of a measurement report, which is then transmitted from a transmitting part (111) to a wireless communication base station apparatus currently connected.
摘要:
Disclosed is a gap support measuring method which performs autonomous gap allocation without lowering the data transfer rate or the throughput. ST301 acquires various kinds of parameters decided by a network so as to execute a gap support measurement task. ST302 checks the current time and starts the gap support measurement task when the current time has become Ts. ST303 judges whether CQI measured by a terminal is lower than a threshold value. ST304 judges whether the threshold value should be updated. ST306 decides the gap length according to the remaining gap length and the remaining time and performs measurement within the gap. ST307 judges whether the measurement is complete. ST308 checks whether the total of the gaps exceed the entire gap length Tg.
摘要:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.