摘要:
A gate driving circuit includes stages, the stages being cascaded and each including: a pull-up part which pulls up a gate voltage to a clock signal during a horizontal scanning period (1H); a carry part which pulls up a carry voltage to the clock signal during the horizontal scanning period (1H); a pull-up driving part connected to a control terminal (Q-node) common to the carry part and the pull-up part and which receives a previous carry voltage from a first previous stage to turn on the pull-up part and the carry part; and a ripple preventing part which prevents a ripple generated at a previous Q-node of a second previous stage based on a ripple generated at the Q-node of the carry part and the pull-up part.
摘要:
A gate driving circuit and a display apparatus having the gate driving circuit include a pull-up part and a carry part pull up a present gate signal and a present carry signal, respectively, to a first clock during a first period within one frame. A pull-down part receives a next gate signal to discharge the present gate signal to a source power voltage. A pull-up driving part is connected to control terminals of the carry part and pull-up part (Q-node) to turn the carry part and pull-up part on and off. A floating preventing part prevents an output terminal of the carry part from being floated in response to the first clock during a second period within the one frame.
摘要:
In a method of fabricating a display substrate, a photoresist layer pattern is formed on a substrate where a thin film transistor (TFT) is formed, and a transparent conductive layer is formed on the photoresist layer pattern. Then, the transparent conductive layer is patterned by a lift-off method to form a transparent conductive layer pattern while partially removing the photoresist layer pattern.
摘要:
A gate driving circuit has a first stage which includes: a pull-up driving unit which receives a first carry signal from a second stage and outputs a control signal having first, second, third and fourth voltages to a first node during a preliminary period, a gate active period, a first gate inactive period and a second gate inactive period, respectively; a pull-up unit which receives the control signal and outputs a gate-on signal to a second node during the gate active period; a carry output unit which receives the control signal and outputs a second carry signal to a third stage during the gate active period; and a pull-down unit which receives a gate-off signal and the second carry signal from the second stage and outputs the control signal having the fourth voltage level to the first node during the second gate inactive period.
摘要:
A liquid crystal display includes a backlight unit, a liquid crystal display panel, and first and second polarizers. The first polarizer is attached to a lower portion of the liquid crystal display panel to face the backlight unit, and the second polarizer is attached to an upper portion of the liquid crystal display panel to correspond to the first polarizer. The liquid crystal display panel includes a first optical layer that partially reflects light provided from the backlight unit, and the first polarizer includes a second optical layer to prevent the light reflected by the first optical layer from being re-reflected to the liquid crystal display panel.
摘要:
In a gate driver of a display device, a plurality of first stages each transmit a first gate signal having a first gate-on voltage to first gate lines, and a plurality of second stages each transmit a second gate signal having a second gate-on voltage to second gate lines and output a carry signal corresponding to the second gate signal. Each first stage outputs the first gate-on voltage based on a third gate-on voltage of the carry signal from a previous second stage, and each second stage outputs the second gate-on voltage based on the third gate-on voltage of the carry signal from the previous second stage.
摘要:
A touch sensible display device includes a display panel. The display panel includes a plurality of pixels, a plurality of image data lines transferring image data signals to the plurality of pixels and each positioned between two neighboring pixels, a plurality of image scanning lines transferring image scanning signals to the plurality of pixels, a plurality of first sense data lines transferring first sense data signals and each positioned between two neighboring pixels without the image data line interposed therebetween, and a plurality of first sensing units connected with the plurality of first sense data lines and sensing a touch to the display panel.
摘要:
In an array substrate and a display apparatus, a gate line receives a gate pulse during a present 1H period and a data line receives a pixel voltage having a polarity inverted at every frame. When a thin film transistor is turned on in response to the gate pulse during the present 1H period, a pixel electrode receives the pixel voltage through the thin film transistor during the present 1H period. A pre-charging part pre-charges the pixel electrode to a common voltage that is a reference voltage of the pixel voltage in response to a previous gate pulse during a previous 1H period
摘要:
A display substrate includes a first metal pattern formed on a substrate and includes a data line to which a pixel voltage is applied, an insulating layer formed on the substrate on which the first metal pattern is formed, an active pattern formed on the insulating layer, a second metal pattern formed on the insulating layer and including a gate line and a storage line, the gate line crossing the data line, a scanning signal applied to the gate line, a protective layer formed on the substrate on which the second metal pattern is formed, and a pixel electrode formed on the protective layer. A method for manufacturing the display substrate, and a display apparatus including the display substrate are further provided.
摘要:
A scan driver drives a display device having a plurality of gate lines transferring scan signals, and a plurality of source lines transferring data signals. The scan driver includes a shift register and a multiple signal applying unit. The shift register includes a plurality of cascade-connected stages, each stage having an output terminal electrically connected to a respective one of the plurality of gate lines. The multiple signal applying unit applies a sub scan signal and a main scan signal. The sub scan signal and the main scan signal sequentially activate each of the plurality of gate lines. Therefore, the scan lines receive the scan signal twice, so that the liquid crystal capacitors electrically connected to the gate lines receive the data voltage twice. As a result, even though the time for charging the liquid crystal capacitors may be reduced, the liquid crystal capacitors may be fully charged to enhance display quality.