摘要:
A voltage regulator module (VRM) includes a first interface configured to couple to a first substrate interface at a first voltage. The VRM also includes a second interface configured to couple to a first processor interface at a second voltage. A first regulator module couples to the first interface and to the second interface. The first regulator module is configured to receive power at the first interface, to convert power to the second voltage, and to deliver power to the first processor interface at the second voltage. A method for providing power to a processor includes receiving power from a first substrate interface at a first voltage. The received power is regulated to generate power at a second voltage. The regulated power is provided to a processor at a first processor interface coupled to the processor. The processor interface delivers power to a logic group of a plurality of logic groups of the processor.
摘要:
A voltage regulator module (VRM) includes a first interface configured to couple to a first substrate interface at a first voltage. The VRM also includes a second interface configured to couple to a first processor interface at a second voltage. A first regulator module couples to the first interface and to the second interface. The first regulator module is configured to receive power at the first interface, to convert power to the second voltage, and to deliver power to the first processor interface at the second voltage. A method for providing power to a processor includes receiving power from a first substrate interface at a first voltage. The received power is regulated to generate power at a second voltage. The regulated power is provided to a processor at a first processor interface coupled to the processor. The processor interface delivers power to a logic group of a plurality of logic groups of the processor.
摘要:
During manufacture, an operating range for dynamic voltage and frequency scaling can be established. A nominal operating point is identified based on a design nominal operating frequency for a computer processor. The nominal operating point comprises a nominal operating voltage identified for the design nominal operating frequency. In dependence upon the nominal operating point, an operating range of frequency and voltage over which the computer processor is to function is determined. Information specifying the nominal operating point and the operating range is stored in non-volatile storage associated with the computer processor.
摘要:
During manufacture, an operating range for dynamic voltage and frequency scaling can be established. A nominal operating point is identified based on a design nominal operating frequency for a computer processor. The nominal operating point comprises a nominal operating voltage identified for the design nominal operating frequency. In dependence upon the nominal operating point, an operating range of frequency and voltage over which the computer processor is to function is determined. Information specifying the nominal operating point and the operating range is stored in non-volatile storage associated with the computer processor.
摘要:
A mechanism is provided for internally controlling and enhancing logic built-in self test in a multiple core microprocessor. The control core may use architectural support for scan and external scan communication (XSCOM) to independently test the other cores while adjusting their frequency and/or voltage. A program loaded onto the control core may adjust the frequency and configure the LBIST to run on each of the cores under test. Once LBIST has completed on a core under test, the control core's program may evaluate the results and decide a next test to run for that core. For isolating failing latch positions, the control core may iteratively configure the LBIST mask and sequence registers on the core under test to determine the location of the failing latch. The control core may control the LBIST stump masks to isolate the failure to a particular latch scan ring and then position within that ring.
摘要:
A mechanism is provided for internally controlling and enhancing logic built-in self test in a multiple core microprocessor. The control core may use architectural support for scan and external scan communication (XSCOM) to independently test the other cores while adjusting their frequency and/or voltage. A program loaded onto the control core may adjust the frequency and configure the LBIST to run on each of the cores under test. Once LBIST has completed on a core under test, the control core's program may evaluate the results and decide a next test to run for that core. For isolating failing latch positions, the control core may iteratively configure the LBIST mask and sequence registers on the core under test to determine the location of the failing latch. The control core may control the LBIST stump masks to isolate the failure to a particular latch scan ring and then position within that ring.
摘要:
Methods, apparatus, and computer program products are described for dynamic frequency and voltage scaling for a computer processor, including identifying during manufacture a nominal operating point of frequency and voltage for a computer processor, the nominal operating point including a nominal operating voltage identified for a design nominal operating frequency; determining, in dependence upon the nominal operating point, an operating range of frequency and voltage over which the computer processor is to function; and storing, in non-volatile storage on the computer processor during manufacture, information specifying the nominal operating point and the operating range.
摘要:
A circuit for measuring timing uncertainty in a clocked digital path and in particular, the number of logic stages completed in any clock cycle. A local clock buffer receives a global clock and provides a complementary pair of local clocks. A first local (launch) clock is an input to a delay line, e.g., 3 clock cycles worth of series connected inverters. Delay line taps (inverter outputs) are inputs to a register that is clocked by the complementary clock pair to capture progression of the launch clock through the delay line and identify any variation (e.g., from jitter, VDD noise) in that progression. Global clock skew and across chip gate length variation can be measured by cross coupling launch clocks from a pair of such clock buffers and selectively passing the local and remote launch clocks to the respective delay lines.
摘要:
A circuit for dynamically monitoring the operation of an integrated circuit under differing temperature, frequency, and voltage (including localized noise and droop), and for detecting early life wear-out mechanisms (e.g., NBTI, hot electrons).
摘要:
A mechanism is provided for internally controlling and enhancing advanced test and characterization in a multiple core microprocessor. To decrease the time needed to test a multiple core chip, the mechanism uses micro-architectural support that allows one core, a control core, to run a functional program to test the other cores. Any core on the chip can be designated to be the control core as long as it has already been tested for functionality at one safe frequency and voltage operating point. An external testing device loads a small program into the control core's dedicated memory. The program functionally running on the control core uses micro-architectural support for functional scan and external scan communication to independently test the other cores while adjusting the frequencies and/or voltages of the other cores until failure. The control core may independently test the other cores by starting, stopping, and determining pass/fail results.