Abstract:
Embodiments of the present invention provide a device comprising a plurality of phase change memory cells, a word line, and a plurality of bit lines. Each phase change memory cell is coupled to a corresponding transistor. Each transistor is coupled to the word line. Each bit line is coupled to a phase change memory cell of the device. The device further comprises a programming circuit configured to program at least one phase change memory cell to the SET state by selectively applying a two-stage waveform to the word line and the bit lines of the device. In a first stage, a first predetermined low voltage and a first predetermined high voltage are applied at the word line and the bit lines, respectively. In a second stage, a second predetermined high voltage and a predetermined voltage with decreasing amplitude are applied at the word line and the bit lines, respectively.
Abstract:
A linear voltage regulator is provided. The linear voltage regulator includes a first circuit configured to receive the first voltage from a voltage source and to remove frequency components of the first voltage in a first frequency range to obtain an output voltage at a primary output node. The linear voltage regulator further includes a second circuit having first and second inverters electrically coupled to the primary output node of the first circuit. The second circuit is configured to receive the output voltage and to remove frequency components of the output voltage in a second frequency range. The second frequency range is greater than the first frequency range.
Abstract:
The on-chip power supply noise sensor detects high frequency overshoots and undershoots of the power supply voltage. By creating two identical current sources and attaching a time constant circuit to only one, the high frequency transient behavior differs while the low frequency behavior is equivalent. By comparing these currents, the magnitude of very high frequency power supply noise can be sensed and used to either set latches or add to a digital counter. This has the advantage of directly sensing the power supply noise in a manner that does not require calibration. Also, since the sensor requires only one power supply, it can be used anywhere on a chip. Finally, it filters out any lower frequency noise that is not interesting to the circuit designer and can be tuned to detect down to whatever frequency is needed.
Abstract:
The on-chip power supply noise sensor detects high frequency overshoots and undershoots of the power supply voltage. By creating two identical current sources and attaching a time constant circuit to only one, the high frequency transient behavior differs while the low frequency behavior is equivalent. By comparing these currents, the magnitude of very high frequency power supply noise cars be sensed and used to either set latches or add to a digital counter. This has the advantage of directly sensing the power supply noise in a matter that does not require calibration. Also, since the sensor requires only one power supply, it can he used anywhere on a chip. Finally, it filters out any lower frequency noise that is not interesting to the circuit designer and can he timed to detect down to whatever frequency is needed.
Abstract:
A testable digital delay line that uses XOR gates as delay elements is provided. The use of XOR gates enables independent control of each input to the multiplexer. With test inputs that enable each delay element, the multiplexer inputs can be assigned any value during test, thus giving the delay line very robust pattern fault coverage. The XOR gate may consist of three current limiting inverters. A reference voltage generator generates constant voltages between a source voltage, bias voltages, and ground. These constant voltages decide the amount of current through the current limiting inverters. Selecting a different set of reference voltages programs a different current flowing in the current limiting inverters. This programmable current causes a programmable unit delay to be introduced by each XOR gate delay element.
Abstract:
A charge-based frequency measurement BIST (CF-BIST) for clock circuits and oscillator circuits is described that requires no outside test stimulus and produces a digital test output. The CF-BIST technique performs structural and defect-oriented testing and uses existing blocks to save die area. The technique adds a multiplexer to the non-sensitive digital path. The system uses the existing VCO as the measuring device and divide-by-N as a frequency counter to reduce the area overhead. The described technique produces an efficient pass/fail evaluation, low-cost and practical implementation of on-chip BIST structure.
Abstract:
Self-synchronizing techniques for checking the accuracy of a pseudorandom bit sequence (PRBS) are provided. The PRBS being checked may be generated by a device (e.g., a device under test) in response to a PRBS received by the device (e.g., from a PRBS generator). In an aspect of the invention, a PRBS checking technique includes the following steps/operations. For a given clock cycle, the presence of an error bit in the PRBS generated by the device is detected. The error bit represents a mismatch between the PRBS input to the device and the PRBS output from the device. Then, propagation of the error bit is prohibited for subsequent clock cycles. The prohibition step/operation may serve to avoid multiple errors being counted for a single error occurrence and/or masking errors in the PRBS output by the device.
Abstract:
A voltage regulator module (VRM) includes a first interface configured to couple to a first substrate interface at a first voltage. The VRM also includes a second interface configured to couple to a first processor interface at a second voltage. A first regulator module couples to the first interface and to the second interface. The first regulator module is configured to receive power at the first interface, to convert power to the second voltage, and to deliver power to the first processor interface at the second voltage. A method for providing power to a processor includes receiving power from a first substrate interface at a first voltage. The received power is regulated to generate power at a second voltage. The regulated power is provided to a processor at a first processor interface coupled to the processor. The processor interface delivers power to a logic group of a plurality of logic groups of the processor.
Abstract:
Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor. The source terminal of the transistor device is connected to an axon path, the gate terminal of the transistor device is connected to a membrane path and a second terminal of the variable state resistor is connected to a dendrite path, such that each synaptic device is coupled between a first axon path and a first dendrite path, and between a first membrane path and said first dendrite path.
Abstract:
A device and method for self-testing an integrated circuit layer for a three-dimensional integrated circuit includes integrally forming a disposable self-test circuit on a common substrate with a first circuit to be tested. The first circuit forms a layer in a three-dimensional integrated circuit structure. The first circuit is tested using circuitry of the self-test circuit. The self-test circuit is removed by detaching the self-test circuit from the first circuit.