摘要:
A thin film transistor and a method of manufacturing the same are provided. The thin film transistor includes a substrate; a buffer layer formed on the substrate; a source and a drain spaced apart from each other on the buffer layer; a channel layer formed on the buffer layer to connect the source and the drain with each other; and a gate formed on the buffer layer to be spaced apart from the source, the drain and the channel layer.
摘要:
A semiconductor device including a substrate, a P-MOS single crystal TFT formed on the substrate, and an N-MOS single crystal TFT formed on the P-MOS single crystal TFT. The source region of the P-MOS single crystal TFT and the source region of the N-MOS single crystal TFT may be connected to each other. The P-MOS single crystal TFT and the N-MOS single crystal TFT may share a common gate. Also, the P-MOS single crystal TFT may include a single crystal silicon layer with a crystal plane of (100) and a crystal direction of . The N-MOS single crystal TFT may include a single crystal silicon layer having the same crystal direction as the single crystal silicon layer of the P-MOS single crystal TFT and having a tensile stress greater than the single crystal silicon layer of the P-MOS single crystal TFT.
摘要:
A semiconductor device including a substrate, a P-MOS single crystal TFT formed on the substrate, and an N-MOS single crystal TFT formed on the P-MOS single crystal TFT. The source region of the P-MOS single crystal TFT and the source region of the N-MOS single crystal TFT may be connected to each other. The P-MOS single crystal TFT and the N-MOS single crystal TFT may share a common gate. Also, the P-MOS single crystal TFT may include a single crystal silicon layer with a crystal plane of (100) and a crystal direction of . The N-MOS single crystal TFT may include a single crystal silicon layer having the same crystal direction as the single crystal silicon layer of the P-MOS single crystal TFT and having a tensile stress greater than the single crystal silicon layer of the P-MOS single crystal TFT.
摘要:
A thin film transistor and a method of manufacturing the same are provided. The thin film transistor includes a substrate; a buffer layer formed on the substrate; a source and a drain spaced apart from each other on the buffer layer; a channel layer formed on the buffer layer to connect the source and the drain with each other; and a gate formed on the buffer layer to be spaced apart from the source, the drain and the channel layer.
摘要:
A thin film transistor and a method of manufacturing the thin film transistor. The thin film transistor may include a substrate, a buffer layer, a polysilicon layer, a gate insulating layer and/or a gate electrode, and a capping layer. The buffer layer may be formed on the substrate. The polysilicon layer may be formed on the buffer layer, and may include a first doped region, a second doped region, and a channel region. The gate insulating layer and a gate electrode may be sequentially stacked on the channel region of the polysilicon layer. The capping layer may be stacked on the gate electrode.
摘要:
Provided are a poly crystalline silicon semiconductor device and a method of fabricating the same. Portions of a silicon layer except for gates are removed to reduce a parasitic capacitance caused from the silicon layer existing on gate bus lines. The silicon layer exists under the gates only, thus the parasitic capacitance is reduced and the deterioration and the delay of signals are prevented. Accordingly, the poly crystalline silicon semiconductor device, such as a thin film transistor, has excellent electric characteristics.
摘要:
In a method of forming a polysilicon film, a thin film transistor including a polysilicon film, and a method of manufacturing a thin film transistor including a polysilicon film, the thin film transistor includes a substrate, a first heat conduction film on the substrate, a second heat conduction film adjacent to the first heat conduction film, the second heat conduction film having a lower thermal conductivity than the first heat conduction film, a polysilicon film on the second heat conduction film and the first heat conduction film adjacent to the second heat conduction film, and a gate stack on the polysilicon film. The second heat conduction film may either be on the first heat conduction film or, alternatively, the first heat conduction film may be non-contiguous and the second heat conduction film may be interposed between portions of the non-contiguous first heat conduction film.
摘要:
In a method of forming a polysilicon film, a thin film transistor including a polysilicon film, and a method of manufacturing a thin film transistor including a polysilicon film, the thin film transistor includes a substrate, a first heat conduction film on the substrate, a second heat conduction film adjacent to the first heat conduction film, the second heat conduction film having a lower thermal conductivity than the first heat conduction film, a polysilicon film on the second heat conduction film and the first heat conduction film adjacent to the second heat conduction film, and a gate stack on the polysilicon film. The second heat conduction film may either be on the first heat conduction film or, alternatively, the first heat conduction film may be non-contiguous and the second heat conduction film may be interposed between portions of the non-contiguous first heat conduction film.
摘要:
Provided are a semiconductor device including an active area which is defined as high and low mobility areas and a thin film transistor having the semiconductor device. The mobility of the active area can be lowered to a level enough to satisfy the requirement of the semiconductor device. The lowering of the mobility of the active area can contribute to reducing mobility deviation between semiconductor devices. As a result, the quality of a flat panel display adopting a large-scale semiconductor device can be greatly improved.
摘要:
A method of forming a high quality channel region of a TFT by forming a large size monocrystalline silicon thin film using a patterned metal mask and a grain boundary filtering region is provided. The method includes sequentially stacking a first buffer layer and an amorphous silicon layer on a substrate, forming a first silicon region in which crystallization begins, a second silicon region having a width smaller than a width of the first silicon region and located on a central portion of a side of the first silicon region, and a third silicon region having a width than greater the width of the second silicon region and contacting the second silicon region, forming a metal mask partly on the first silicon region, and crystallizing the amorphous silicon layer by cooling the amorphous silicon layer after melting the entire amorphous silicon layer except for a portion of the amorphous silicon layer under the metal mask by radiating laser beams to the patterned amorphous silicon layer.