摘要:
A repeat control method in the enhanced uplink asynchronous hybrid automatic repeat request (HARQ) includes the following steps: (1) the network side adding a parameter of retransmission timer in the HARQ Profile of each dedicated media access control (MAC-d) entity flow in the user equipment, and the user equipment configures the value of the retransmission timer of the enhanced media access control entity (MAC-e) protocol data unit (PDU) according to the parameter of the retransmission timer; (2) the user equipment uses the value of the retransmission timer and the maximum number of retransmissions to control the retransmission. The radio bearer QoS delay requirement and the cooperation work between the sender and the receiver are implemented.
摘要:
The present invention provides a time division synchronous code division multiple access (TD-SCDMA) system for controlling enhanced uplink random access, including user equipment (UE), node B and serving radio network controller. The present invention also provides a method for controlling the enhanced uplink random access in a time division synchronous code division multiple access system, including: in high speed uplink packet access scheduling service of time division synchronous code division multiple access system, the higher layer of network side deploys a timer at the user equipment side; if the user equipment still needs to transmit data when the current available grant expires, it starts up the timer which is used as the delay time of initiating the enhanced uplink random access. According to the ability of the network side in controlling E-DCH resources, the present invention can be used to control the time delay that UE initiates the enhanced uplink random access after one grant expires, so as to avoid invalid random access; meanwhile the present invention provides a reliable mechanism for the enhanced uplink random access. By using the method of this invention, system resources can be reasonably utilized, thereby greatly improving the system efficiency.
摘要:
The present invention provides a time division synchronous code division multiple access (TD-SCDMA) system for controlling enhanced uplink random access, including user equipment (UE), node B and serving radio network controller. The present invention also provides a method for controlling the enhanced uplink random access in a time division synchronous code division multiple access system, including: in high speed uplink packet access scheduling service of time division synchronous code division multiple access system, the higher layer of network side deploys a timer at the user equipment side; if the user equipment still needs to transmit data when the current available grant expires, it starts up the timer which is used as the delay time of initiating the enhanced uplink random access. According to the ability of the network side in controlling E-DCH resources, the present invention can be used to control the time delay that UE initiates the enhanced uplink random access after one grant expires, so as to avoid invalid random access; meanwhile the present invention provides a reliable mechanism for the enhanced uplink random access. By using the method of this invention, system resources can be reasonably utilized, thereby greatly improving the system efficiency.
摘要:
A repeat control method in enhanced uplink asynchronous hybrid automatic repeat request (HARQ) includes the following steps: (1) the network side adding a repeat timer parameter in the HARQ attribute of each dedicated media access control (MAC-d) entity flow, the user terminal setting the repeat timer value in the enhanced media access control (MAC-e) entity protocol data unit (PDU) according to the repeat timer parameter; (2) the user terminal performing the repeat control utilizing the repeat timer value in cooperation with the maximum repeat number. The wireless bearer QoS requirement and the cooperation working between the sender and the receiver are implemented.
摘要:
Systems and methods for centralized client application management are provided. In an example embodiment, device data is received from a user device. The user device is identified according to an identification rule. A client state is received from the user device. A match between the client state and a specified state is determined. Based on the client state matching the specified state, an instruction to be performed on the user device is generated. The instruction is caused to be performed on the user device. The instruction causes a change to the client state stored on the user device.
摘要:
The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase or threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase. In another preferred embodiment, the invention relates to altering threonine substrated deamination and dehydration activity in plants, arthropods, and microorganisms using threonine deaminase. In some embodiments, the invention related to overexpression and increased activity of arginase, threonine deaminase and a proteinase inhibitor.
摘要:
A method of preparing core-shell submicron spheres is disclosed. The method comprises steps hereafter. An emulsion containing a core monomer is heated to a temperature of 10° C. below its boiling point to the boiling point. A core forming step is performed by adding an initiator solution to the heated emulsion to form cores by polymerizing the core monomer. When the conversion of the above polymerization is 10% to 95%, a shell forming step is performed by adding a shell monomer into the emulsion, at a temperature of 50° C. below the emulsion's boiling point to the boiling point thereof, to form shells, respectively surrounding the cores, by polymerizing the shell monomer.