摘要:
A transistor has a channel region in a substrate and source and drain regions in the substrate on opposite sides of the channel region. A gate stack is formed on the substrate above the channel region. This gate stack comprises an interface layer contacting the channel region of the substrate, and a high-k dielectric layer (having a dielectric constant above 4.0) contacting (on) the interface layer. A Nitrogen rich first metal Nitride layer contacts (is on) the dielectric layer, and a metal rich second metal Nitride layer contacts (is on) the first metal Nitride layer. Finally, a Polysilicon cap contacts (is on) the second metal Nitride layer.
摘要:
Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
摘要:
Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
摘要:
A multilayered gate stack having improved reliability (i.e., low charge trapping and gate leakage degradation) is provided. The inventive multilayered gate stack includes, from bottom to top, a metal nitrogen-containing layer located on a surface of a high-k gate dielectric and Si-containing conductor located directly on a surface of the metal nitrogen-containing layer. The improved reliability is achieved by utilizing a metal nitrogen-containing layer having a compositional ratio of metal to nitrogen of less than 1.1. The inventive gate stack can be useful as an element of a complementary metal oxide semiconductor (CMOS). The present invention also provides a method of fabricating such a gate stack in which the process conditions of a sputtering process are varied to control the ratio of metal and nitrogen within the sputter deposited layer.
摘要:
Methods, IC and related transistors using capping layer with high-k/metal gate stacks are disclosed. In one embodiment, the IC includes a first type transistor having a gate electrode including a first metal, a second metal and a first dielectric layer, the first dielectric layer including oxygen; a second type transistor separated from the first type transistor by an isolation region, the second type transistor having a gate electrode including the second metal having a work function appropriate for the second type transistor and the first dielectric layer; and wherein the gate electrode of the first type transistor includes a rare earth metal between the first metal and the second metal and the gate electrode of the second type transistor includes a second dielectric layer made of an oxide of the rare earth metal.
摘要:
A multilayered gate stack having improved reliability (i.e., low charge trapping and gate leakage degradation) is provided. The inventive multilayered gate stack includes, from bottom to top, a metal nitrogen-containing layer located on a surface of a high-k gate dielectric and Si-containing conductor located directly on a surface of the metal nitrogen-containing layer. The improved reliability is achieved by utilizing a metal nitrogen-containing layer having a compositional ratio of metal to nitrogen of less than 1.1. The inventive gate stack can be useful as an element of a complementary metal oxide semiconductor (CMOS). The present invention also provides a method of fabricating such a gate stack in which the process conditions of a sputtering process are varied to control the ratio of metal and nitrogen within the sputter deposited layer.
摘要:
Methods, IC and related transistors using capping layer with high-k/metal gate stacks are disclosed. In one embodiment, the IC includes a first type transistor having a gate electrode including a first metal, a second metal and a first dielectric layer, the first dielectric layer including oxygen; a second type transistor separated from the first type transistor by an isolation region, the second type transistor having a gate electrode including the second metal having a work function appropriate for the second type transistor and the first dielectric layer; and wherein the gate electrode of the first type transistor includes a rare earth metal between the first metal and the second metal and the gate electrode of the second type transistor includes a second dielectric layer made of an oxide of the rare earth metal.
摘要:
Methods, IC and related transistors using capping layer with high-k/metal gate stacks are disclosed. In one embodiment, the IC includes a first type transistor having a gate electrode including a first metal, a second metal and a first dielectric layer, the first dielectric layer including oxygen; a second type transistor separated from the first type transistor by an isolation region, the second type transistor having a gate electrode including the second metal having a work function appropriate for the second type transistor and the first dielectric layer; and wherein the gate electrode of the first type transistor includes a rare earth metal between the first metal and the second metal and the gate electrode of the second type transistor includes a second dielectric layer made of an oxide of the rare earth metal.
摘要:
A multilayered gate stack having improved reliability (i.e., low charge trapping and gate leakage degradation) is provided. The inventive multilayered gate stack includes, from bottom to top, a metal nitrogen-containing layer located on a surface of a high-k gate dielectric and Si-containing conductor located directly on a surface of the metal nitrogen-containing layer. The improved reliability is achieved by utilizing a metal nitrogen-containing layer having a compositional ratio of metal to nitrogen of less than 1.1. The inventive gate stack can be useful as an element of a complementary metal oxide semiconductor (CMOS). The present invention also provides a method of fabricating such a gate stack in which the process conditions of a sputtering process are varied to control the ratio of metal and nitrogen within the sputter deposited layer.
摘要:
CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.