摘要:
A monitoring device for monitoring the physiological condition of a patient (1) on a continuous basis, which includes a transmitter unit (2) adapted to attach to a patient so as to be in contact with the skin of a patient, a corresponding receiver unit (5). The transmitter unit includes a strap or belt (3) adapted to attach to or around a body part of a patient. A plurality of sensors (E) are mounted to the belt for monitoring a plurality of patient physiological parameters, including at least the patient's skin impedance, heart rate and aspects of the heart beat. The sensors are connected to a microcontroller (8) which processes the signals and which is linked to a wireless transmitter (9). A portable receiver unit is adapted to receive and process the signal from the transmitter. The receiver unit includes a display (14) for data relating to the patient and preferably an alarm (15).
摘要:
The invention relates to the modelling and design of early warning systems for detecting medical conditions using physiological responses. The device comprises sensors for monitoring physiological parameters such as skin impedance, heart rate, and QT interval of a patient, means for establishing when those parameters change, the rate of change of the parameters, and a neural network processor for processing the information obtained by the sensors. The neural network processor is programmed with a fast learning algorithm. When the neural network establishes that a physiological condition is present in the patient an alarm signal will be generated. The invention extends to a method of non-invasive monitoring of a person using a neural network programmed with a fast learning algorithm. A non-invasive hypoglycaemia monitor is specifically described.
摘要:
A monitoring device for monitoring the physiological condition of a patient (1) on a continuous basis, which includes a transmitter unit (2) adapted to attach to a patient so as to be in contact with the skin of a patient, a corresponding receiver unit (5). The transmitter unit includes a strap or belt (3) adapted to attach to or around a body part of a patient. A plurality of sensors (E) are mounted to the belt for monitoring a plurality of patient physiological parameters, including at least the patient's skin impedance, heart rate and aspects of the heart beat. The sensors are connected to a microcontroller (8) which processes the signals and which is linked to a wireless transmitter (9). A portable receiver unit is adapted to receive and process the signal from the transmitter. The receiver unit includes a display (14) for data relating to the patient and preferably an alarm (15).
摘要:
A method of monitoring virtualized network includes receiving information regarding the virtualized network, wherein the information is received at a port of a network switch appliance, receiving a packet at a network port of the network switch appliance, and using the received information to determine whether to process the packet according to a first packet processing scheme or a second packet processing scheme, wherein the first packet processing scheme involves performing header stripping, and performing packet transmission to one of a plurality of instrument ports at the network switch appliance after the header stripping, each of the instrument ports configured for communicatively coupling to a network monitoring instrument, and wherein the second packet processing scheme involves performing packet transmission to one of the plurality of instrument ports at the network switch appliance without performing any header stripping.
摘要:
A heart valve prosthesis is provided having a self-expanding multi-level frame that supports a valve body comprising a skirt and plurality of coapting leaflets. The frame transitions between a contracted delivery configuration that enables percutaneous transluminal delivery, and an expanded deployed configuration having an asymmetric hourglass shape. The valve body skirt and leaflets are constructed so that the center of coaptation may be selected to reduce horizontal forces applied to the commissures of the valve, and to efficiently distribute and transmit forces along the leaflets and to the frame. Alternatively, the valve body may be used as a surgically implantable replacement valve prosthesis.
摘要:
One embodiment of the present invention provides a system that accommodates different clock frequencies in an Ethernet passive optical network (EPON). The system receives a signal from an optical line terminal (OLT) at an optical network unit (ONU) and derives an OLT clock. The system also maintains a local clock. The system further receives from the OLT an assignment for an upstream transmission window, during which the ONU can transmit an upstream data burst to the OLT based on the local clock. The system adjusts the number of bits of the data burst without affecting the payload data carried in the data burst, thereby allowing the data burst to fit properly within the upstream transmission window and compensating for frequency differences between the local clock and the OLT clock. The system transmits the data burst based on the local clock in the upstream transmission window.
摘要:
A method for testing a consumer electronics (CE) product that wirelessly receives user commands from an IR remote control includes obtaining command codes from the remote and correlating the command codes to respective functions. A tester can generate a test script designating the functions but the tester is not required to designate the command codes. In this way, the script can be executed by wirelessly transmitting to the CE product command codes corresponding to the functions designated in the script. During script execution, the CE product is queried for health indicia such as memory usage. The CE product sends the product health indicia to a test computer over a USB debug port.
摘要:
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable prosthesis frame. The valve may be delivered transluminally or transmyocardially using a thorascopic or other limited access approach using a delivery catheter. Preferably, the initial partial expansion of the valve is performed against the native valve annulus to provide adequate anchoring and positioning of the valve as the remaining portions of the valve expand. The valve may be delivered using a retrograde or antegrade approach. When delivered using a retrograde approach, a delivery catheter with a pull-back sheath may be used, while antegrade delivery is preferably performed with a delivery catheter with a push-forward sheath that releases the proximal end of the valve first.
摘要:
The present invention is related to a switch for use in wireless communication systems. In one embodiment, the switch can concurrently process data from multiple mobile stations and supports full duplex, i.e., allowing receiving and transmitting data at the same time. The switch can concurrently communicate with other switches and/or mobile stations in the basic service set (BSS) of that switch. A switch may be considered an access point commonly used in other approaches. However, systems using the switch do not need to use an Ethernet switch commonly found in WLAN communication systems that use access points. Switches may be set up in a master-slave scheme wherein a master switch communicates with its slave switches, and slave switches communicate with one another through the master switch. If the data is for a mobile station in the same BSS of the switch, then, via a switch controller, the switch passes the data from the receiving path to the transmitting path. As a result, the data does not have to travel out of the switch and then back to the same switch again.
摘要:
A hardware looping mechanism and method is described herein for handling any number and/or type of discontinuity instruction that may arise when executing program instructions within a scalar or superscalar processor. For example, the hardware looping mechanism may provide zero-overhead looping for branch instructions, in addition to single loop constructs and multiple loop constructs (which may or may not be nested). Zero-overhead looping may also be provided in special cases, e.g., when servicing an interrupt or executing a branch-out-of-loop instruction. In addition to reducing the number of instructions required to execute a program, as well as the overall time and power consumed during program execution, the hardware looping mechanism described herein may be integrated within any processor architecture without modifying existing program code.