摘要:
A multi-functional cyclic siloxane compound (A), a siloxane-based (co)polymer prepared from the compound (A), or compound (A) and at least one of a Si monomer having organic bridges (B), an acyclic alkoxy silane monomer (C), and a linear siloxane monomer (D); and a process for preparing a dielectric film using the polymer. The siloxane compound of the present invention is highly reactive, so the polymer prepared from the compound is excellent in mechanical properties, thermal stability and crack resistance, and has a low dielectric constant resulting from compatibility with conventional pore-generating materials. Furthermore, a low content of carbon and high content of SiO2 enhance its applicability to the process of producing a semiconductor, wherein it finds great use as a dielectric film.
摘要:
A multi-functional cyclic siloxane compound (A), a siloxane-based (co)polymer prepared from the compound (A), or compound (A) and at least one of a Si monomer having organic bridges (B), an acyclic alkoxy silane monomer (C), and a linear siloxane monomer (D); and a process for preparing a dielectric film using the polymer. The siloxane compound of the present invention is highly reactive, so the polymer prepared from the compound is excellent in mechanical properties, thermal stability and crack resistance, and has a low dielectric constant resulting from compatibility with conventional pore-generating materials. Furthermore, a low content of carbon and high content of SiO2 enhance its applicability to the process of producing a semiconductor, wherein it finds great use as a dielectric film.
摘要:
A multi-functional cyclic siloxane compound (A), a siloxane-based (co)polymer prepared from the compound (A), or compound (A) and at least one of a Si monomer having organic bridges (B), an acyclic alkoxy silane monomer (C), and a linear siloxane monomer (D); and a process for preparing a dielectric film using the polymer. The siloxane compound of the present invention is highly reactive, so the polymer prepared from the compound is excellent in mechanical properties, thermal stability and crack resistance, and has a low dielectric constant resulting from compatibility with conventional pore-generating materials. Furthermore, a low content of carbon and high content of SiO2 enhance its applicability to the process of producing a semiconductor, wherein it finds great use as a dielectric film.
摘要:
A novel multi-functional linear siloxane compound, a siloxane polymer prepared from the siloxane compound, and a process for forming a dielectric film by using the siloxane polymer. The linear siloxane polymer has enhanced mechanical properties (e.g., modulus), superior thermal stability, a low carbon content and a low hygroscopicity and is prepared by the homopolymerization of the linear siloxane compound or the copolymerization of the linear siloxane compound with another monomer. A dielectric film can be produced by heat-curing a coating solution containing the siloxane polymer which is highly reactive. The siloxane polymer prepared from the siloxane compound not only has satisfactory mechanical properties, thermal stability and crack resistance, but also exhibits a low hygroscopicity and excellent compatibility with pore-forming materials, which leads to a low dielectric constant. Furthermore, the siloxane polymer retains a relatively low carbon content but a high SiO2 content, resulting in its improved applicability to semiconductor devices. Therefore, the siloxane polymer is advantageously used as a material for dielectric films of semiconductor devices.
摘要:
A novel multi-functional linear siloxane compound, a siloxane polymer prepared from the siloxane compound, and a process for forming a dielectric film by using the siloxane polymer. The linear siloxane polymer has enhanced mechanical properties (e.g., modulus), superior thermal stability, a low carbon content and a low hygroscopicity and is prepared by the homopolymerization of the linear siloxane compound or the copolymerization of the linear siloxane compound with another monomer. A dielectric film can be produced by heat-curing a coating solution containing the siloxane polymer which is highly reactive. The siloxane polymer prepared from the siloxane compound not only has satisfactory mechanical properties, thermal stability and crack resistance, but also exhibits a low hygroscopicity and excellent compatibility with pore-forming materials, which leads to a low dielectric constant. Furthermore, the siloxane polymer retains a relatively low carbon content but a high SiO2 content, resulting in its improved applicability to semiconductor devices. Therefore, the siloxane polymer is advantageously used as a material for dielectric films of semiconductor devices.
摘要:
A novel multi-functional linear siloxane compound, a siloxane polymer prepared from the siloxane compound, and a process for forming a dielectric film by using the siloxane polymer. The linear siloxane polymer has enhanced mechanical properties (e.g., modulus), superior thermal stability, a low carbon content and a low hygroscopicity and is prepared by the homopolymerization of the linear siloxane compound or the copolymerization of the linear siloxane compound with another monomer. A dielectric film can be produced by heat-curing a coating solution containing the siloxane polymer which is highly reactive. The siloxane polymer prepared from the siloxane compound not only has satisfactory mechanical properties, thermal stability and crack resistance, but also exhibits a low hygroscopicity and excellent compatibility with pore-forming materials, which leads to a low dielectric constant. Furthermore, the siloxane polymer retains a relatively low carbon content but a high SiO2 content, resulting in its improved applicability to semiconductor devices. Therefore, the siloxane polymer is advantageously used as a material for dielectric films of semiconductor devices.
摘要:
A semiconductor thin film using a self-assembled monolayer (SAM) and a method for producing the semiconductor thin film are provided. According to the semiconductor thin film, a uniform inorganic seed layer is formed by using the self-assembled monolayer so that the adhesion between an insulating layer and a semiconductor layer is enhanced and thus the surface tension is reduced, thereby allowing the semiconductor thin film to have high quality without defects.
摘要:
Disclosed herein is a thin film prepared using a mixture of nanocrystal particles and a molecular precursor. The nanocrystal is used in the thin film as a nucleus for crystal growth to minimize grain boundaries of the thin film and the molecular precursor is used to form the same crystal structure as the nanocrystal particles, thereby improving the crystallinity of the thin film. The thin film can be used effectively in a variety of electronic devices, including thin film transistors, electroluminescence devices, memory devices, and solar cells. Further disclosed is a method for preparing the thin film.
摘要:
This invention pertains to a composition for a dielectric thin film, which is capable of being subjected to a low-temperature process. Specifically, the invention is directed to a metal oxide dielectric thin film formed using the composition, a preparation method thereof, a transistor device comprising the dielectric thin film, and an electronic device comprising the transistor device. The electronic device to which the dielectric thin film has been applied exhibits excellent electrical properties, thereby satisfying both a low operating voltage and a high charge mobility.
摘要:
Disclosed herein is a thin film prepared using a mixture of nanocrystal particles and a molecular precursor. The nanocrystal is used in the thin film as a nucleus for crystal growth to minimize grain boundaries of the thin film and the molecular precursor is used to form the same crystal structure as the nanocrystal particles, thereby improving the crystallinity of the thin film. The thin film can be used effectively in a variety of electronic devices, including thin film transistors, electroluminescence devices, memory devices, and solar cells.Further disclosed is a method for preparing the thin film.