Abstract:
A semiconductor memory device for testing whether an ODT circuit is on or off during a data read mode includes an on-die termination (ODT) circuit and an ODT state information output unit. The ODT circuit includes at least one ODT resistor. The ODT state information output unit outputs an ODT state information signal indicating whether the ODT circuit is on or off, in response to an ODT control signal during a data read mode when data is output from memory cells. With a semiconductor memory device and method capable of testing whether an ODT resistor is on or off during a data read mode, it is possible to test whether an ODT circuit is on or off during reading of data.
Abstract:
Example embodiments disclose a semiconductor memory device and a test method thereof. The semiconductor memory device includes a memory cell array that provides first and second data groups at a first data rate and an output circuit, in a normal mode of operation, serially outputs the first and second data groups at a first data rate on an external terminal. In a test mode of operation, the output circuit outputs the first data group or the second data group at a second data rate on the external terminal in response to control signals, without switching the test mode. The second data rate may be lower than the first data rate.
Abstract:
A semiconductor memory device and a method for testing the same are capable of performing a low-frequency test operation even when a high-frequency external clock signal is input. The method for testing the semiconductor memory device comprises: interpreting a control command from a plurality of external control signals and generating a low-frequency operation control signal when an MRS command included in the control command designates a write and read test operation; when a write command is input as the control command, converting the write command into a low-frequency write command in response to the low-frequency operation control signal, generating an internal low-frequency clock signal in response to the low-frequency operation control signal, and performing a low-frequency write operation based on the internal low-frequency clock signal; and buffering an external clock signal to generate an internal normal-frequency clock signal and, when a read command is input as the control command, performing a read operation based on the internal normal-frequency clock signal in response to the read command.
Abstract:
In a sense amplifier control circuit and method for a semiconductor memory device, a row address strobe (RAS) signal delay unit delays a RAS signal for a predetermined period of time. A sense amplifier control signal generator generates first and second sense amplifier control signals, responsive to the delayed RAS signal and a test mode control signal, which are enabled at the same time or at different periods depending on operation modes of the memory device. First and second sense amplifiers respectively sense and amplify the potential of odd-numbered and even-numbered bit line pairs of the memory device, responsive to the first and second sense amplifier control signals. The probability and accuracy of detecting bit line bridge defects are increased, because the times for sensing two adjacent bit lines are different.
Abstract:
Example embodiments disclose a semiconductor memory device and a test method thereof. The semiconductor memory device includes a memory cell array that provides first and second data groups at a first data rate and an output circuit, in a normal mode of operation, serially outputs the first and second data groups at a first data rate on an external terminal. In a test mode of operation, the output circuit outputs the first data group or the second data group at a second data rate on the external terminal in response to control signals, without switching the test mode. The second data rate may be lower than the first data rate.
Abstract:
Example embodiments disclose a semiconductor memory device and a test method thereof. The semiconductor memory device includes a memory cell array that provides first and second data groups at a first data rate and an output circuit, in a normal mode of operation, serially outputs the first and second data groups at a first data rate on an external terminal. In a test mode of operation, the output circuit outputs the first data group or the second data group at a second data rate on the external terminal in response to control signals, without switching the test mode. The second data rate may be lower than the first data rate.
Abstract:
Example embodiments disclose a semiconductor memory device and a test method thereof. The semiconductor memory device includes a memory cell array that provides first and second data groups at a first data rate and an output circuit, in a normal mode of operation, serially outputs the first and second data groups at a first data rate on an external terminal. In a test mode of operation, the output circuit outputs the first data group or the second data group at a second data rate on the external terminal in response to control signals, without switching the test mode. The second data rate may be lower than the first data rate.
Abstract:
A semiconductor memory device and a method for testing the same are capable of performing a low-frequency test operation even when a high-frequency external clock signal is input. The method for testing the semiconductor memory device comprises: interpreting a control command from a plurality of external control signals and generating a low-frequency operation control signal when an MRS command included in the control command designates a write and read test operation; when a write command is input as the control command, converting the write command into a low-frequency write command in response to the low-frequency operation control signal, generating an internal low-frequency clock signal in response to the low-frequency operation control signal, and performing a low-frequency write operation based on the internal low-frequency clock signal; and buffering an external clock signal to generate an internal normal-frequency clock signal and, when a read command is input as the control command, performing a read operation based on the internal normal-frequency clock signal in response to the read command.
Abstract:
A device for measuring voltage, including a voltage detecting portion for detecting a plurality of voltages and outputting a maximum voltage of the plurality of voltages, a voltage latching portion that receives a first output from the voltage detecting portion, and a voltage reading portion that receives a second output from the voltage latching portion. Another device for measuring voltage, including a supply voltage, a ground voltage, and first and second supply voltage measuring units connected in parallel to each other between the supply voltage and the ground voltage. A method for measuring voltage, including receiving a plurality of voltages, detecting a maximum voltage from the plurality of voltages, maintaining the detected maximum voltage, and outputting the maintained detected maximum voltage.
Abstract:
A device for measuring voltage, including a voltage detecting portion for detecting a plurality of voltages and outputting a maximum voltage of the plurality of voltages, a voltage latching portion that receives a first output from the voltage detecting portion, and a voltage reading portion that receives a second output from the voltage latching portion. Another device for measuring voltage, including a supply voltage, a ground voltage, and first and second supply voltage measuring units connected in parallel to each other between the supply voltage and the ground voltage. A method for measuring voltage, including receiving a plurality of voltages, detecting a maximum voltage from the plurality of voltages, maintaining the detected maximum voltage, and outputting the maintained detected maximum voltage.