Abstract:
A method for controlling an engine which comprises a combustion pressure sensor includes receiving a combustion pressure signal from the combustion pressure sensor. An Indicated mean effective pressure (IMEP) deviation for each cylinder and an IMEP deviation for each driving cycle for the engine are calculated based on a combustion pressure according to the received combustion pressure signal. A main injection timing is set based on a difference between the calculated IMEP deviations for the each cylinder and a difference between the calculated IMEP deviations for the each driving cycle. The engine runs by injecting a fuel according to the set main injection timing.
Abstract:
An engine system includes an intake passage, a non-deactivation exhaust passage, a second exhaust manifold, a first turbocharger including a first turbine rotated by exhaust gas flowing via the first exhaust manifold, a second turbocharger including a second turbine rotated by exhaust gas flowing via the second exhaust manifold, an exhaust outlet, a main intake circulation passage in communication with the intake passage via a compressor of the first turbocharger such that supercharging air is supplied to the intake passage, a sub intake circulation passage in communication with the main intake circulation passage via a compressor of the second turbocharger such that supercharging air is supplied to the main intake circulation passage, and a deactivation valve disposed on the sub intake circulation passage between the compressor of the second turbocharger and the main intake circulation passage so as to selectively open/close the sub intake circulation passage.
Abstract:
A method for controlling a cold starting of a diesel engine vehicle may include determining whether a cold starting condition is satisfied by detecting data for controlling a diesel engine, determining torque generated by combustion for starting the diesel engine when the cold starting condition is satisfied, determining a combustion delay and a combustion phase based on the torque and detected data, determining a main injection timing according to the determined combustion delay and combustion phase, determining a latent heat of fuel based on the torque and detected data, determining a pilot injection amount according to the determined latent heat of fuel, determining a total amount of heat by combustion based on the torque and detected data, determining a main injection amount according to the determined total amount of heat, and controlling an operation of an injector based on the main injection timing, pilot injection amount and main injection amount.
Abstract:
An engine control apparatus includes an engine information detector for detecting engine information including an engine speed, a fuel amount, an air amount, a boost pressure, injection timing, an intake air temperature, an atmospheric pressure, and an atmospheric temperature, a combustion pressure sensor for detecting a combustion pressure of an engine, and a controller performing an IMEP control for adjusting a main injection amount and a combustion noise control for adjusting a pilot injection amount by using the engine information detected by the engine information detector and the combustion pressure detected by the combustion pressure sensor, and calculating a final main injection correction amount and a final pilot injection correction amount by using an IMEP pilot correction amount and an IMEP correction amount outputted from the IMEP control and a combustion noise correction amount outputted from the combustion noise control.
Abstract:
A method of predicting NOx generation amount of a compression ignition engine is provided. The method includes predicting a composition ratio of a gas in a mixture and a flame temperature using driving variables of an engine and calculating a nitrogen oxide generation rate using the composition ratio of the gas in the mixture and the flame temperature. Additionally, a nitrogen oxide generation concentration around flame is calculated using the nitrogen oxide generation rate and a total nitrogen oxide generation amount of a cylinder is predicted using the nitrogen oxide generation rate and the nitrogen oxide generation concentration.
Abstract:
A method for controlling a cold starting of a diesel engine vehicle may include determining whether a cold starting condition is satisfied by detecting data for controlling a diesel engine, determining torque generated by combustion for starting the diesel engine when the cold starting condition is satisfied, determining a combustion delay and a combustion phase based on the torque and detected data, determining a main injection timing according to the determined combustion delay and combustion phase, determining a latent heat of fuel based on the torque and detected data, determining a pilot injection amount according to the determined latent heat of fuel, determining a total amount of heat by combustion based on the torque and detected data, determining a main injection amount according to the determined total amount of heat, and controlling an operation of an injector based on the main injection timing, pilot injection amount and main injection amount.
Abstract:
A method of predicting NOx generation amount of a compression ignition engine is provided. The method includes predicting a composition ratio of a gas in a mixture and a flame temperature using driving variables of an engine and calculating a nitrogen oxide generation rate using the composition ratio of the gas in the mixture and the flame temperature. Additionally, a nitrogen oxide generation concentration around flame is calculated using the nitrogen oxide generation rate and a total nitrogen oxide generation amount of a cylinder is predicted using the nitrogen oxide generation rate and the nitrogen oxide generation concentration.
Abstract:
A method of predicting a cylinder pressure of a diesel engine by a pressure predicting device may include predicting a pilot injection combustion pressure by pilot injection; predicting main combustion duration of main injection; and predicting a main injection combustion pressure after the main injection by using the pilot injection combustion pressure and the main combustion duration.
Abstract:
A hybrid vehicle includes an engine with cylinders generating driving power and a turbocharger having a turbine in an exhaust line, and a compressor which rotates with the turbine and compresses intake gas. An electric supercharger is disposed in the intake line upstream from the compressor, a catalytic converter is disposed in the exhaust line downstream from the turbine. A post processing bypass line connects the exhaust line at a downstream portion of the catalytic converter and the intake line at a downstream portion of the electric supercharger. A low pressure EGR device includes a low pressure EGR line branching off from the exhaust line and merging into the intake line and a low pressure EGR cooler disposed therein. A high pressure EGR device includes a high pressure EGR line branching off from an exhaust system and merging into an intake system, and a high pressure EGR cooler disposed therein.
Abstract:
A method of predicting and controlling NOx generation amount is provided. The method includes calculating a difference between an actual and a reference NOx exhaust amount and analyzing influence of the in-cylinder pressure at a combustion start time, an oxygen amount in EGR gas, and a fuel injection timing. A NOx rate of change is calculated based on change in the in-cylinder pressure at the combustion start time, the oxygen amount in the EGR gas, and the fuel injection timing. A variation width and a NOx value are calculated at the combustion start time, the oxygen amount in the EGR gas, and the fuel injection timing. The NOx value is adjusted based on the NOx value adjustment amount and a NOx final value is determined. A target boost pressure, a target oxygen amount, and a target fuel injection timing are determined to provide a final command signal.