摘要:
A hydraulic pressure instruction-learning apparatus of a hybrid vehicle includes a power source including an engine and a motor. The engine clutch is disposed between the engine and the motor. The vehicle controller is configured to output a hydraulic pressure instruction to control engagement/disengagement of the engine clutch. The vehicle controller compares output performance of the engine clutch with predetermined dynamic target performance in a launch control, extracts a performance error function if a difference therebetween exceeds a predetermined allowable error range, and corrects the output performance of the engine clutch, such that the output performance falls within the predetermined allowable error range and is stored as a learned value.
摘要:
A system for providing a speed profile of a self-driving vehicle includes a vehicle driving information prediction device, and a speed profile generation device, wherein the vehicle driving prediction device includes a navigation unit configured to set information on a drive route and a target travel time, a 3D map information provision unit configured to search for gradient information of the drive route set by the navigation unit, and a vehicle driving information provision unit, and wherein the speed profile generation device includes a vehicle energy consumption calculation unit configured to calculate energy consumption at a current speed of the vehicle when the vehicle runs along the set drive route, and a speed profile calculation unit configured to calculate a distance-based target speed profile by executing a dynamic programming algorithm.
摘要:
A method for controlling a hybrid vehicle is provided. The method includes setting a driving path of the vehicle based on an input destination and current position and predicting a future speed of the vehicle using information regarding the driving path, environmental information, and driving pattern information of a driver. An optimum power distribution map is derived including an optimum SOC trajectory and a power distribution ratio of the engine and the motor using the predicted future speed. Additionally, engine power and motor power is distributed using the optimum SOC trajectory and a power distribution ratio of the engine and the motor.
摘要:
A system for providing a speed profile of a self-driving vehicle includes a vehicle driving information prediction device, and a speed profile generation device, wherein the vehicle driving prediction device includes a navigation unit configured to set information on a drive route and a target travel time, a 3D map information provision unit configured to search for gradient information of the drive route set by the navigation unit, and a vehicle driving information provision unit, and wherein the speed profile generation device includes a vehicle energy consumption calculation unit configured to calculate energy consumption at a current speed of the vehicle when the vehicle runs along the set drive route, and a speed profile calculation unit configured to calculate a distance-based target speed profile by executing a dynamic programming algorithm.
摘要:
A method for controlling a hybrid vehicle is provided. The method includes setting a driving path of the vehicle based on an input destination and current position and predicting a future speed of the vehicle using information regarding the driving path, environmental information, and driving pattern information of a driver. An optimum power distribution map is derived including an optimum SOC trajectory and a power distribution ratio of the engine and the motor using the predicted future speed. Additionally, engine power and motor power is distributed using the optimum SOC trajectory and a power distribution ratio of the engine and the motor.
摘要:
A power distribution control system of a vehicle includes a driving information provider for collecting and providing information required for power distribution control of an engine and a motor in the vehicle; a communication unit for transmitting the information provided by the driving information provider from the vehicle; a cloud server outside the vehicle for selecting and transmitting optimal power distribution control logic data corresponding to a driving situation of the vehicle based on the information provided through the communication unit from the vehicle; and a vehicle controller for performing power distribution control of the engine and the motor based on real-time driving state variable information of the vehicle using the optimal power distribution control logic data received through the communication unit by the vehicle from the cloud server.
摘要:
The present disclosure provides a method of providing guidance for use of electric power of an electric vehicle capable of limiting use of electric power in a vehicle-to-load (V2L) mode or providing various pieces of information on use of the electric power. The method includes receiving information on a set travel route to an electric vehicle charging station in the V2L mode, calculating battery energy requirements necessary for the vehicle to move from the current location to a charging station along the travel route, calculating available amount of energy in the V2L mode based on the battery energy requirements and the current amount of energy of a battery, calculating an available usage time of an electronic product based on electric power consumption per unit time of the electronic product and the available amount of energy, and displaying the available usage time of the electronic product through an information-providing device.
摘要:
A power distribution control system of a vehicle includes a driving information provider for collecting and providing information required for power distribution control of an engine and a motor in the vehicle; a communication unit for transmitting the information provided by the driving information provider from the vehicle; a cloud server outside the vehicle for selecting and transmitting optimal power distribution control logic data corresponding to a driving situation of the vehicle based on the information provided through the communication unit from the vehicle; and a vehicle controller for performing power distribution control of the engine and the motor based on real-time driving state variable information of the vehicle using the optimal power distribution control logic data received through the communication unit by the vehicle from the cloud server.