Abstract:
The disclosure relates to an imaging device for wavelength dependent imaging. The imaging device includes a detector having a plurality of light sensitive elements, a plurality of light propagating units, each including: a funnel element for collecting light at a collecting end and propagate the light to a transmitting end; a waveguide for receiving light from the transmitting end at a receiving end and propagating light to a distributing end.
Abstract:
Digital driving circuitry for driving an active matrix display comprising a plurality of pixels logically organized in a plurality of rows and a plurality of columns, each pixel comprising a light emitting element, comprises a current driver for each of the plurality of columns for driving a predetermined current through the corresponding column, the predetermined current being proportional to the number of pixels that are ON in that column. The digital driving circuitry further comprises digital select line driving circuitry for sequentially selecting the plurality of rows, and digital data line driving circuitry for writing digital image codes to the pixels in a selected row, synchronized with the digital select line driving circuitry.
Abstract:
A method for digital driving of an active matrix display with a predetermined frame rate is described. The display contains a plurality of pixels organized in a plurality of rows and a plurality of columns. The method includes representing each of the plurality of pixels of an image to be displayed within a frame by an n-bit digital image code. The method also includes dividing the image frame into sub-frames, which may be of substantially equal duration. Within each sub-frame, the method includes sequentially selecting at least one of the plurality of rows twice. Upon a first selection, a first digital code is written to the selected row and upon a second selection a second digital code is written to the selected row. There is a predetermined time delay between the second selection and the first selection. Digital driving circuitry is also described.
Abstract:
A semiconductor detector (100) for electromagnetic radiation within a wavelength range is disclosed, comprising a first waveguide portion (110), a funnel element (130) configured to funnel incident electromagnetic radiation into a first end (112) of the first waveguide portion, and a second waveguide portion (120) extending in parallel with the first waveguide portion. The second waveguide portion is coupled to the first waveguide portion and configured to out-couple electromagnetic radiation from the first waveguide portion, within a sub-range of the wavelength range. Further, a photodetector (140) including a photoactive layer (144) is arranged at a second end (114) of the first waveguide portion and at an end (124) of the second waveguide portion, and configured to separately detect electromagnetic radiation transmitted through and exiting the first waveguide portion and the second waveguide portion.
Abstract:
A system and for distributing data for 3D light field projection and a method thereof. The system comprises input terminals and output terminals that are connectable to pixel elements of a display. Data paths are established between input terminals and output terminals, and are controlled by data switches. The system also comprises a control plane adapted for applying control variables to the data switches. Control switches of the control plane select the control variables which are applied to the data switches. Sequences of control variables and enable variables propagate along at least one first delay line and along at least one second delay line respectively. Delay units of the at least one first delay line and of the at least one second delay line have a synchronous relationship. During system run-time patterns contained in the stream of input data are detected for determining the sequences of control variables.
Abstract:
The disclosed technology generally relates to integrated circuit (IC), and more particularly to IC devices having one or more power gating switches and methods of fabricating the same. In one aspect, an IC device comprises a front end-of-the-line (FEOL) portion and a back end-of-the-line (BEOL) portion electrically connected to the FEOL portion. The BEOL portion comprises a plurality of metallization levels, wherein each metallization level comprises a plurality of metal lines extending in a lateral direction and a plurality of conductive vertical via structures. The IC device further comprises a power gating transistor formed in the BEOL portion and in direct electrical contact with at least one of the via structures or one of the metal lines.
Abstract:
A method for driving an active matrix display comprising a plurality of pixels, wherein each pixel comprises a drive transistor having a driver gate, is disclosed. The method comprises: receiving information of a desired image to be displayed; determining a compensated voltage for the driver gate for each pixel based on calibration data, wherein the calibration data comprises a set of individual calibration values applying to different pixels, and wherein the compensated voltage compensates for differences between pixels affecting a relation of an intensity of light output by the pixel as function of a difference between the voltage applied to the driver gate and a threshold voltage of the drive transistor; and outputting the compensated voltage for the driver gate for each of the pixels.
Abstract:
A method for driving an active matrix display comprising a plurality of pixels, wherein each pixel comprises a drive transistor having a driver gate, is disclosed. The method comprises: receiving information of a desired image to be displayed; determining a compensated voltage for the driver gate for each pixel based on calibration data, wherein the calibration data comprises a set of individual calibration values applying to different pixels, and wherein the compensated voltage compensates for differences between pixels affecting a relation of an intensity of light output by the pixel as function of a difference between the voltage applied to the driver gate and a threshold voltage of the drive transistor; and outputting the compensated voltage for the driver gate for each of the pixels.
Abstract:
Example embodiments relate to detectors for detecting electromagnetic radiation. One embodiment includes a detector for detecting electromagnetic radiation spanning a range from a first wavelength to a second wavelength. The detector includes an array of funnel elements for propagating electromagnetic radiation from a second plane towards a first plane. Each of the funnel elements includes an entrance end and an exit end. The entrance ends of the array of funnel elements define the second plane. The entrance end is larger than half of the second wavelength in a medium from which the electromagnetic radiation enters the detector. The exit end is smaller than half of the first wavelength of in the medium. The detector also includes an array of photosensitive elements for detecting electromagnetic radiation incident on the array of photosensitive elements. Each funnel element is associated with a photosensitive element. The array of photosensitive elements defines the first plane.
Abstract:
A method includes representing dots of an image to be displayed within a field by a digital image code. The field is divided into sub-fields which are further divided into a first and second time interval which respectively comprise a first and a second number of equally long time slots. Time slots are assigned to each bit of the digital image code according to each bit's significance. Successive time slots of the first time interval are assigned to one of the bits of the image code and successive time slots of the second time interval are assigned to a different one of the bits of the image code. Within the duration of at least one sub-field, each rows is selected twice for respectively writing a first bit of the image code during the first time interval and writing a second bit of the image code during the second time interval.