Abstract:
The present subject matter describes a method and apparatus for operating a delayed coker. The method comprises contacting a vapour produced in a delayed coker-drum with a catalyst maintained in form of a bed, and maintaining a level of said catalyst-bed within pre-defined limits during catalytic-cracking of the vapour. Thereafter, the cracked-vapour is routed to a coker-fractionator column to trigger conversion into one or more hydrocarbon products.
Abstract:
An apparatus for supplying additives into a coker drum includes an inlet for supplying a hydrocarbon feed stream into the coker drum and conduits along the circumference of walls of the coker drum. Each conduit has an injection nozzle to supply additives inside the coker drum. An injection control system controls the operation of the injection nozzles such that 1) one or more of the injection nozzles placed within a first distance above a vapour liquid interphase of the hydrocarbon feed stream are configured to supply the additives; and 2) supply of the additive discontinues from a particular injection nozzle when a distance between the injection nozzle and the vapour liquid interphase is less than or equal to a second distance. The apparatus optionally includes a mechanical drive system moving at least one of the conduits based on the level of the vapour liquid interphase in the coker drum.
Abstract:
According to an embodiment, a spent catalyst distributor for distributing spent catalyst in a catalyst regenerator vessel housing a dense phase catalyst bed and a dilute phase catalyst bed is disclosed. The spent catalyst distributor comprises a conduit comprising a proximal end and a distal end. The conduit projects horizontally or horizontally and downwardly into the regenerator vessel and includes an opening located at the distal end for introducing the spent catalyst at a first location inside the regenerator vessel. The conduit further includes a plurality of orifices located along a length of the conduit between the distal end and an inner wall of the regenerator vessel for introducing the spent catalyst at a plurality of locations inside the regenerator vessel.
Abstract:
The present invention is directed to novel thermal cracking additive compositions for reduction of coke yield in Delayed Coking process and method for preparing the same. The present invention also provides that the thermal cracking additive compositions of the present invention are in micron-size and nano-size. Further, the present invention provides a process of thermal cracking of heavy petroleum residue used in petroleum refineries using Delayed Coking process to produce petroleum coke and lighter hydrocarbon products with decreased coke yield and increased yield of liquid and/or gaseous products.
Abstract:
An apparatus and a method for mixing and atomizing a hydrocarbon stream is disclosed. The apparatus comprises of an inner conduit having a first inlet for receiving the hydrocarbon stream, and a second inlet for receiving a primary dispersion stream. The inner conduit produces a primary mixture comprising the hydrocarbon stream and the primary dispersion stream. The apparatus further includes an outer conduit having a third inlet for receiving a secondary dispersion stream. Further, said inner and outer conduits together define an annular passage. The distal end of the annular passage defines a second set of orifices for allowing the secondary dispersion stream flowing there-through to come in contact with the primary mixture and thereby dispensing the secondary mixture so obtained through an outlet.
Abstract:
The present invention relates to delayed coking of heavy petroleum residue producing petroleum coke and lighter hydrocarbon products. The invented process utilize a pre-cracking reactor for mild thermal cracking of the feedstock and an intermediate separator, before being subjected to higher severity thermal cracking in delayed coking process, resulting in reduction in overall coke yield.
Abstract:
An apparatus for supplying additives into a coker drum includes an inlet for supplying a hydrocarbon feed stream into the coker drum and conduits along the circumference of walls of the coker drum. Each conduit has an injection nozzle to supply additives inside the coker drum. An injection control system controls the operation of the injection nozzles such that 1) one or more of the injection nozzles placed within a first distance above a vapour liquid interphase of the hydrocarbon feed stream are configured to supply the additives; and 2) supply of the additive discontinues from a particular injection nozzle when a distance between the injection nozzle and the vapour liquid interphase is less than or equal to a second distance. The apparatus optionally includes a mechanical drive system moving at least one of the conduits based on the level of the vapour liquid interphase in the coker drum.