Abstract:
The present disclosure provides a process for high conversion residue cracking in a circulating fluidized bed reactor while integrating it with the dehydration of ethanol. More particularly, the present disclosure relates to an integrated circulating fluidized bed process for the simultaneous dehydration of ethanol and cracking of a hydrocarbon feedstock. By integrating the cracking reactor with ethanol dehydration reactor, more conradson carbon residue feedstock can be processed in cracking reactor while limiting the coke combustor temperature.
Abstract:
The present invention discloses an integrated process and an apparatus for production of various alcohols and Oligomerization of Olefinic feed stocks comprising butylenes and mixture thereof. In this process the combined light olefinic hydrocarbon feedstock is divided into two streams and contacted in two different reaction zones, viz. hydration and oligomerization. The mixture of alcohols and oligomer product from hydration reaction is separated and the bottom stream from separator is routed to oligomerization reaction zone in a controlled quantity as selectivity enhancer. Both the reaction zones are operated at different conditions. The product from oligomerization zone is further separated in to lighter and heavier components. Each reaction zone may comprise series of reactors filled with acidic catalysts comprising ion exchange resins.
Abstract:
The invention provides for a process and apparatus for simultaneous conversion of lighter and heavier hydrocarbon feedstocks into improved yields of light olefins in the range of C2 to C4, liquid aromatics in the range C6 to C8 mainly benzene, toluene, xylene and ethyl benzene and other useful products employing at least two different reactors operated in series with respect to catalyst flow and parallel with respect to feed flow under different regimes and process conditions with same catalyst system.
Abstract:
The present invention relates to a process for etherification of mixed olefinic light naphtha boiling in the range of C5-90° C. cut with simultaneous minimization of unreacted methanol concentration in the product. The etherification of mixed olefinic light naphtha produces the high octane blending component which can be blended directly in the gasoline pool without any recovery of the feed oxygenates like methanol, ethanol etc. which conventionally uses energy intensive separation processes.
Abstract:
The present invention relates to a process for production of oligomer products from olefinic C4 feed stocks comprising isobutene, butenes, butanes, butadienes and mixture thereof. Particularly, the present invention relates to a process for the preparation of oligomers using olefinic C4 feed stock in presence of tertiary butyl alcohol (TBA) and iso propyl alcohol (IPA).
Abstract:
The present invention is related to the isomerization process in which a light naphtha stream comprising of paraffinic (mono and single branched), naphthenic and aromatic hydrocarbons in the range of C5-C7 is contacted with the solid catalyst in multiple reaction zones and in presence of hydrogen to produce high octane gasoline predominantly comprising of paraffins (single and di-branched) and naphthenes. The process scheme comprises of more than one isomerization reaction section operating at different temperatures and other operating conditions. The catalyst employed in these reaction sections is a high coordination sulfated mixed metal oxide catalyst which contains at least one noble metal and sulfated zirconia in addition to the other components. The process of the present invention also comprises more than one fractionation section and recycling of a particular stream to the reaction zone for improving the isomerization of light naphtha.
Abstract:
The present invention provides a process of preparing a high coordination sulfated mixed metal oxide catalyst. The process comprises mixing specific ratios of alumina and zirconia mixtures at specific particle size limits which do not exceed 37 μm, in presence of a combination of α-amino acids i.e., non-polar side chains and basic side chains having molecular weight less than 250, nitric acid (HNO3) and sulfuric acid (H2SO4) at a pH range of 1.5 to 3.8 at temperatures below 30° C. The catalysts have a high conversion towards hydrocarbon isomerization reaction while concurrently having crushing strength in range of 2.0 daN and 5.0 daN, allowing for efficient commercial application.
Abstract:
The present invention provides a process for a production of light olefins and aromatics from cracked light naphtha by selective cracking. The present invention thus provides a process for up grading cracked olefinic naphtha to high value petrochemical feed stocks. This process is based on catalytic cracking in which the catalyst activity is optimized by depositing coke for production of light olefins and aromatics. The proposed process has high flexibility and can be operated either in maximizing olefins as reflected from the PIE ratio or in maximizing aromatics (BTX) at different modes of operation depending upon the product requirement.