Abstract:
A vehicle, a vehicle positioning system and a vehicle positioning method are provided. The vehicle positioning system includes a 2D image sensor, a 3D sensor and a processor. The 2D image sensor is configured for obtaining 2D image data. The 3D sensor is configured for obtaining 3D point cloud data. The processor is coupled to the 2D image sensor and the 3D sensor, and configured for merging the 2D image data and the 3D point cloud data to generate 3D image data, identifying at least one static object from the 2D image data, obtaining 3D point cloud data of the static object from the 3D image data based on each one of the at least one static object, and calculating a vehicle relative coordinate of the vehicle based on the 3D point cloud data of the static object.
Abstract:
A roadside detection system, a roadside unit and a roadside communication method are provided. The roadside unit receives a positioning signal from a satellite positioning system and obtains roadside latitude and longitude coordinates and an initialization parameter coordinate. The roadside unit receives object information of the object. The roadside unit obtains object latitude and longitude coordinates, an object speed, an object acceleration, an object length, and an object heading/direction based on the roadside latitude and longitude coordinates, the initialization parameter coordinate, and the object information. The roadside unit converts the object latitude and longitude coordinates, the object speed, the object acceleration, the object length, and the object heading/direction into a V2V Basic Safety Message format.
Abstract:
A vehicle turning alarm method and a vehicle turning alarm device are provided herein. The vehicle turning alarm method includes acquiring map information and vehicle information. The vehicle turning alarm method further includes determining a vehicle status according to the map information and the vehicle information when a vehicle approaches an intersection. The vehicle turning alarm method further includes not sending an alert message if the vehicle status is not a left-turning event.
Abstract:
A method for sensing a traffic environment for use in an electronic device is provided. The method includes: generating local object information by sensing an environment within a first sensing range of the electronic device, wherein the local object information at least includes first geographical distribution information of local objects within the first sensing range; receiving external object information transmitted by at least one node, wherein the external object information includes at least second geographical distribution information of external objects within a second sensing range of the node; and generating object integration information according to the local object information and the external object information.
Abstract:
A tele-operated vehicle (TOV), a vehicle control device of the TOV and a control method of the TOV are provided. The TOV includes a communication circuit, a sensor, a vehicle control device and a driving circuit. The sensor is configured to sense the environment of the TOV. The vehicle control device is coupled to the communication circuit to receive a remote driving command from the remote control platform. The vehicle control device is coupled to the sensor to receive the sensing result. The vehicle control device generates an automatic driving command based on the sensing result. The vehicle control device determines an actual control command based on the remote driving command and the automatic driving command. The driving circuit is coupled to the vehicle control device to receive the actual control command. The driving circuit drives the TOV according to the actual control command.
Abstract:
A vehicle turning alarm method and a vehicle turning alarm device are provided herein. The vehicle turning alarm method includes acquiring map information and vehicle information. The vehicle turning alarm method further includes determining a vehicle status according to the map information and the vehicle information when a vehicle approaches an intersection. The vehicle turning alarm method further includes not sending an alert message if the vehicle status is not a left-turning event.
Abstract:
A vehicle, a vehicle positioning system and a vehicle positioning method are provided. The vehicle positioning system includes a 2D image sensor, a 3D sensor and a processor. The 2D image sensor is configured for obtaining 2D image data. The 3D sensor is configured for obtaining 3D point cloud data. The processor is coupled to the 2D image sensor and the 3D sensor, and configured for merging the 2D image data and the 3D point cloud data to generate 3D image data, identifying at least one static object from the 2D image data, obtaining 3D point cloud data of the static object from the 3D image data based on each one of the at least one static object, and calculating a vehicle relative coordinate of the vehicle based on the 3D point cloud data of the static object.
Abstract:
A roadside detection system, a roadside unit and a roadside communication method are provided. The roadside unit receives a positioning signal from a satellite positioning system and obtains roadside latitude and longitude coordinates and an initialization parameter coordinate. The roadside unit receives object information of the object. The roadside unit obtains object latitude and longitude coordinates, an object speed, an object acceleration, an object length, and an object heading/direction based on the roadside latitude and longitude coordinates, the initialization parameter coordinate, and the object information. The roadside unit converts the object latitude and longitude coordinates, the object speed, the object acceleration, the object length, and the object heading/direction into a V2V Basic Safety Message format.
Abstract:
A method of dynamic adjusting a generation frequency of messages in vehicular networks is provided, including: receiving updating requests and emergent degree of the vehicle event, and then determining whether the generation frequency of messages meets the dynamic change of the vehicle, if not satisfied, selecting a different adjustment method according to the event emergent degree. When the event is emergent, its generation frequency can be raised immediately by an interruptive adjustment and to suppress the generation frequency of messages of the others. Conversely, adjusting its generation frequency by a progressive adjustment and reducing the generation frequency of messages of the other lower-priority vehicles. According to the present disclosure, it prevents lower priority messages from occupying the channel overly, and emergency messages with higher priority can be satisfied immediately when it needed.
Abstract:
Disclosed are an electronic device and a method for selecting a region of interest in an image. The method includes the following steps: receiving an image; using the image to obtain a plurality of regions of interest, wherein each of the plurality of regions of interest corresponds to an object danger level value; and using the object danger level value to select a first region of interest from the plurality of regions of interest.