Abstract:
An illumination device includes a substrate, a light emitting structure, a sealant, and a laminating board is provided. The light emitting structure includes a first electrode layer, a light emitting layer and a second electrode layer stacked on the substrate sequentially. The sealant covers the light emitting structure. The laminating board is attached to the substrate. The sealant is located between the laminating board and the substrate. The laminating board includes a carrier body, a metal layer and a plurality of pads. The metal layer is exposed at a first surface of the carrier body, is in contact with the sealant and shields an area of the light emitting layer of the light emitting structure. The pads are exposed at the first surface of the carrier body and electrically connected to the first electrode layer and the second electrode layer. The metal layer is electrically isolated from the pads.
Abstract:
An organic light-emitting device includes a first substrate, a light-emitting structure layer, a first electrode layer, a second electrode layer, a second substrate, first conduction members, a second conduction member and protection structures. The light-emitting structure layer is disposed on the first substrate. The first electrode layer is disposed on the light-emitting structure layer and includes pad-like patterns. The second electrode layer is disposed between the light-emitting structure layer and the first substrate. The second substrate is adhered on the first electrode layer and includes a first circuit and a second circuit. The first circuit includes a continuous pattern and contact portions. The first conduction members are connected between the first circuit and the first electrode layer. The second conduction member is connected between the second circuit and the second electrode layer. The protection structures respectively form open circuits or close circuits between the contact portions and the continuous pattern.
Abstract:
An electronic device package including a substrate, a base film, a first seal, an electronic device and a second seal is provided. The first seal is disposed between the substrate and the base film and partially exposed by the base film. The electronic device is formed on the base film. The second seal disposed on the electronic device includes absorbents. A part of the second seal adheres to a part of the first seal exposed by the base film. The first seal and the second seal encapsulate the base film and the electronic device. The first seal and the second seal are the same host materials. A packaging method of an electronic device package is also provided.
Abstract:
A light-emitting assembly includes a first substrate, a first electrode layer, a light-emitting layer, a second electrode layer, a second substrate, a first conductive member and a second conductive member. The first electrode layer, the light-emitting layer and the second electrode layer are sequentially disposed on the first substrate. An area of the second electrode layer is entirely located within an area of the light emitting layer. The second electrode layer is located between the second substrate and the light-emitting layer. The first and second conductive members are disposed between the first and second substrates. The first electrode layer is electrically connected to a first circuit on the second substrate through the first conductive member. The second electrode layer is electrically connected to a second circuit on the second substrate through the second conductive member. The second conductive member is located within the area of the second electrode layer.
Abstract:
An organic light-emitting device includes a first substrate, a light-emitting structure layer, a first electrode layer, a second electrode layer, a second substrate, first conduction members, a second conduction member and protection structures. The light-emitting structure layer is disposed on the first substrate. The first electrode layer is disposed on the light-emitting structure layer and includes pad-like patterns. The second electrode layer is disposed between the light-emitting structure layer and the first substrate. The second substrate is adhered on the first electrode layer and includes a first circuit and a second circuit. The first circuit includes a continuous pattern and contact portions. The first conduction members are connected between the first circuit and the first electrode layer. The second conduction member is connected between the second circuit and the second electrode layer. The protection structures respectively form open circuits or close circuits between the contact portions and the continuous pattern.
Abstract:
A transparent antenna includes a substrate, an antenna grid layer, and a ground grid layer. The substrate has an electrically conductive hole extending from two opposite surfaced of the substrate. The antenna grid layer is formed on a surface of the substrate. The antenna grid layer includes a feeding portion and a transmission portion. The ground grid layer is formed on another surface of the substrate. The ground grid layer is coupled to the feeding portion of the antenna grid layer via the electrically conductive hole. An offset distance between a projection of a gridline of the antenna grid layer on the first surface and a projection of a gridline of the ground grid layer on the first surface is smaller than or equal to half of a difference between a line width of the antenna grid layer and a line width of the ground grid layer.
Abstract:
An illumination device includes a substrate, a light emitting structure, a sealant, and a laminating board is provided. The light emitting structure includes a first electrode layer, a light emitting layer and a second electrode layer stacked on the substrate sequentially. The sealant covers the light emitting structure. The laminating board is attached to the substrate. The sealant is located between the laminating board and the substrate. The laminating board includes a carrier body, a metal layer and a plurality of pads. The metal layer is exposed at a first surface of the carrier body, is in contact with the sealant and shields an area of the light emitting layer of the light emitting structure. The pads are exposed at the first surface of the carrier body and electrically connected to the first electrode layer and the second electrode layer. The metal layer is electrically isolated from the pads.
Abstract:
Provided is a barrier film which includes an organo-silicon polymeric composition having Si3—N4 bonds and Si—OH bonds. The peak height of Si4—N4 bonds in an infrared absorption spectrum is represented by A, and the peak height of Si—OH bonds in the infrared absorption spectrum is represented by B; and a ratio of A to B is greater than 2.
Abstract:
A light-emitting assembly includes a first substrate, a first electrode layer, a light-emitting layer, a second electrode layer, a second substrate, a first conductive member and a second conductive member. The first electrode layer, the light-emitting layer and the second electrode layer are sequentially disposed on the first substrate. An area of the second electrode layer is entirely located within an area of the light emitting layer. The second electrode layer is located between the second substrate and the light-emitting layer. The first and second conductive members are disposed between the first and second substrates. The first electrode layer is electrically connected to a first circuit on the second substrate through the first conductive member. The second electrode layer is electrically connected to a second circuit on the second substrate through the second conductive member. The second conductive member is located within the area of the second electrode layer.