Abstract:
A highly-integrated multi-antenna array comprising a first conductor layer, a second conductor layer, a plurality of conjoined conducting structures, a plurality of slot antennas, and a conjoined slot structure is provided. The first conductor layer and the second conductor layer are spaced apart by a first interval, and are electrically connected by the conjoined conducting structures. Each slot antenna has a radiating slot structure and a signal coupling line, which partially overlap or cross each other. All radiating slot structures are formed at the second conductor layer. Each signal coupling line is spaced apart from the second conductor layer by a coupling interval and has a signal feeding point. Each slot antenna is excited to generate at least one resonant mode covering at least one identical first communication band. The conjoined slot structure is formed at the second conductor layer and connects with all radiating slot structures.
Abstract:
A beam antenna comprising a first material layer, a second material layer, a first radiating conductor unit and an energy transmission conductor layer is provided. The first material layer has a signal source and a first conductor layer. The second material layer has a first thin-film layer, where the first thin-film layer is adhered on a surface of the second material layer. The first thin-film layer further comprises an insulating gel and a plurality of trigger particles. The first radiating conductor unit is adhered on a surface of the first thin-file layer, and the first thin-file layer is located between the first radiating conductor unit and the second material layer. The energy transmission conductor structure is disposed between the first and the second material layers, which has a first terminal and a second terminal that electrically coupled or connected to the signal source and the first radiating conductor unit respectively.
Abstract:
A communication device including a ground plane and an antenna element is provided. An edge of the ground plane is embedded with a notch, which has at least a first edge and a second edge. The antenna element, disposed at the notch, has at least a first operating frequency band and a second operating frequency band. The antenna element includes a first conductive portion and a second conductive portion. The first conductive portion has a starting terminal, electrically coupled to the first edge of the notch through a signal source, as a feeding terminal of the antenna element. A capacitive coupling portion is formed between an end terminal of the first conductive portion and the ground plane. The second conductive portion has a shorting terminal electrically coupled or connected to the second edge of the notch.
Abstract:
The disclosure provides a multi-feed antenna including a first conductor layer, a second conductor layer, four supporting conductor structures and four feeding conductor lines. The second conductor layer has a first center position and is spaced apart from the first conductor layer at a first interval. The four supporting conductor structures respectively electrically connect the first conductor layer and the second conductor layer and form four electrically connected sections at the second conductor layer. The four electrically connected sections respectively extend from different side edges of the second conductor layer toward the first center position, so that the second conductor layer forms four mutually connected radiating conductor plates. The four feeding conductor lines are all located between the first conductor layer and the second conductor layer. The four feeding conductor lines and the four supporting conductor structures form an interleaved annular arrangement. Each of the feeding conductor lines has one end electrically connected to a coupling conductor plate. Each of the coupling conductor plates is spaced apart from a different one of the radiating conductor plates at a coupling interval. Each of the feeding conductor lines has another end electrically connected to a signal source respectively. The four feeding conductor lines excite the second conductor layer to generate at least four resonant modes. The at least four resonant modes cover at least one identical first communication band.
Abstract:
The disclosure provides a communication device. The communication device includes a ground conductor portion and a multi-antenna system. The multi-antenna system includes at least a first and a second resonant portion, each of which is disposed on the corresponding radiating edge of the ground conductor portion. Each of the resonant portions may have a loop resonant structure or may have an open-slot resonant structure, and has a resonant path. The electrically coupling portion makes the length of the resonant path less than or equal to 0.18 times the wavelength of the lowest operating frequency of the multi-antenna system, and thereby excites the corresponding radiating edge and forms a strong surface current distribution, and generates an effective radiating energy and at least one resonant mode, in which the effective radiating energy has a corresponding strongest radiation direction.
Abstract:
The disclosure provides a multi-feed antenna including a first conductor layer, a second conductor layer, four supporting conductor structures and four feeding conductor lines. The second conductor layer has a first center position and is spaced apart from the first conductor layer at a first interval. The four electrically connected sections respectively extend from different side edges of the second conductor layer toward the first center position, so that the second conductor layer forms four mutually connected radiating conductor plates. The four feeding conductor lines are all located between the first conductor layer and the second conductor layer. The four feeding conductor lines and the four supporting conductor structures form an interleaved annular arrangement. The four feeding conductor lines excite the second conductor layer to generate at least four resonant modes. The at least four resonant modes cover at least one identical first communication band.
Abstract:
A laminated antenna structure includes a substrate, a first conductive circuit layer, an insulating colloidal layer, a second conductive circuit layer and a conductive structure. The first conductive circuit layer is disposed on or above the substrate, the second conductive circuit layer is disposed above the first conductive circuit layer, and the insulating colloidal layer is disposed between the first and the second conductive circuit layers. The first conductive circuit layer, the insulating colloidal layer and the second conductive circuit layer form a laminated capacitive structure. The conductive structure is electrically connected to a signal source on the substrate, and the signal source is electrically connected to at least one of the first conductive circuit layer and the second conductive circuit layer. The insulating colloidal layer contains catalyzers.
Abstract:
The disclosure provides an integrated wideband antenna, comprising a first conductor layer, a first conductor patch, a second conductor patch, a feeding conductor structure and a signal source. The first conductor patch has a first coupling edge and a first connecting edge. The first connecting edge electrically connects with the first conductor layer through a first shorting structure. The second conductor patch has a second coupling edge and a second connecting edge. The second connecting edge electrically connects with the first conductor layer through a second shorting structure. The second coupling edge is spaced apart from the first coupling edge at a third interval forming a resonant open slot. The feeding conductor structure is located within the resonant open slot and has a first conductor line, a second conductor line and a third conductor line. The first conductor line is spaced apart from the first coupling edge with a first coupling interval. The second conductor line is spaced apart from the second coupling edge with a second coupling interval. The third conductor line electrically connects the first conductor line and the second conductor line. The signal source is electrically coupled to the feeding conductor structure. The signal source excites the integrated wideband antenna to generate one multi-resonance mode covering at least one first communication band. [REPRESENTATIVE FIGURE]: FIG. 1A Simple Symbolic Explanation of the Representative Figure
1: integrated wideband antenna 11: first conductor layer 12: first conductor patch 121: first coupling edge 122: first connecting edge 123: first shorting structure 13: second conductor patch 131: second coupling edge 132: second connecting edge 133: second shorting structure 14: resonant open slot 15: feeding conductor structure 151: first conductor line 152: second conductor line 153: third conductor line 16: signal source d1: first interval d2: second interval d3: third interval s1: first coupling interval s2: second coupling interval
Abstract:
A highly integrated pattern-variable multi-antenna array, including a ground conductor structure, a first antenna array, a second antenna array, and an array conjoined grounding structure, is provided. A first inverted L-shaped resonant structure has a first feeding point, and the others respectively have a first switch and are electrically connected or coupled to the ground conductor structure. A second inverted L-shaped resonant structure has a second feeding point, and the others respectively have a second switch and are electrically connected or coupled to the ground conductor structure. The first and second antenna arrays respectively generate first and second resonance modes. The second and first resonance modes cover at least one same first communication frequency band. The array conjoined grounding structure electrically connects an adjacent first inverted L-shaped resonant structure, one of the second inverted L-shaped resonant structures, and has an array conjoined capacitive structure electrically connecting the ground conductor structure.
Abstract:
Provided is a hybrid multi-band antenna array, including: a multilayer substrate board including a ground conductor structure having a first edge; a first antenna array including a plurality of folded loop antennas, all of which being integrated with the multilayer substrate board and arranged along the first edge sequentially, wherein the first antenna array is excited to generate a first resonant mode covering at least one first communication band; and a second antenna array including a plurality of parallel-connected slot antennas, all of which being integrated with the multilayer substrate board and arranged along the first edge sequentially, wherein the second antenna array is excited to generate a second resonant mode covering at least one second communication band, and a frequency of the second resonant mode is lower than a frequency of the first resonant mode.