Abstract:
An image content extraction method and an image content extraction device are disclosed. The method includes the following. An image file is obtained; the image file is analyzed to obtain distribution information of at least one grid in an image frame corresponding to the image file; template information is determined according to the distribution information of the at least one grid; text information is extracted from the image file according to the template information; and integration information related to a medical record of a user is generated according to the text information.
Abstract:
An access system, an access device and an access method for accessing health information are disclosed. The access system includes a decentralized database for recording an authorization file corresponding to health information and a public key corresponding to the authorization file, a centralized database for using the public key corresponding to the authorization file to encrypt and store the health information corresponding to the authorization file into an access space, and an access device for issuing an access request of health information to the decentralized database based on user identification, for the decentralized database to identify and authorize the user identification based on the authorization file corresponding to the health information and ratify the access request and provide an instruction after identifying and authorizing the user identification, and for acquiring the encrypted health information from the access space based on the instruction.
Abstract:
A method for dynamic physiological characteristic region capturing includes: detecting a human body and generate thermal images with continuous time-sequence data; detecting the thermal images and locate a skeleton from one thermal images; based on the skeleton to capture a nose and a human face, the human face is set as an ROI is further divided into image blocks; relating the image blocks to the thermal images; based on variation of temperature information in continuous time-sequence data for the image blocks to divide the image blocks into the first and the second frequency variation blocks; and, analyzing the temperature information in the continuous time-sequence data to the first and the second frequency variation blocks to obtain different physiological information of the human body. In addition, a system for the same is also provided.
Abstract:
A system and a method of multi-user coaching are introduced herein. Motion-sensing cameras are applied to capture images, and a depth image stitching module is applied to perform a depth image stitching process on the captured images to expand the motion-sensing range, so as to establish a virtual environment for multi-user coaching. Each user can be coached individually by a one-to-multiple approach to improve his or her motions. By using the system and the method of multi-user coaching, that is, the system can only calculates on motion similarities of the users, and instructions are fed back to each user. Therefore, the system and the method described herein can be extensively applied to various products, such as a virtual gymnasium, a virtual aerobics classroom, a virtual Budokan, and so on.
Abstract:
A method for controlling an electronic equipment and a wearable device are provided, respectively. The method for controlling the electronic equipment includes the following steps. An inertial signal is detected. A gesture is obtained by dividing the inertial signal or classifying the inertial signal. A controlling command is outputted based on the gesture to control the electronic equipment, such as a desktop device, a portable device or the wearable device.
Abstract:
An exercise physiological sensing system, a motion artifact suppression processing method and a motion artifact suppression processing device for obtaining a stable exercise heart rate signal of a user during exercise are provided. The exercise physiological sensing system includes a bone conduction object, a signal-to-noise ratio analysis module, and a computation module. The bone conduction object has a physiological sensor. The physiological sensor detects a physiological signal of otic bones of the user. The signal-to-noise ratio analysis module is coupled to the physiological sensor and detects a stability of the physiological signal of the otic bones. The computation module is coupled to the signal-to-noise ratio analysis module and generates the stable exercise heart rate signal according to the physiological signal of the otic bones. Accordingly, the exercise physiological sensing system can effectively improve the detected stability of an exercise physiological signal.
Abstract:
An exercise physiological sensing system, a motion artifact suppression processing method and a motion artifact suppression processing device for obtaining a stable exercise heart rate signal of a user during exercise are provided. The exercise physiological sensing system includes a bone conduction body, a signal-to-noise ratio analysis module, and a computation module. The bone conduction body has a physiological sensor. The physiological sensor detects a physiological signal from a detected area of the user. The signal-to-noise ratio analysis module is coupled to the physiological sensor and detects a quality stability of the physiological signal. The computation module is coupled to the signal-to-noise ratio analysis module and generates the stable exercise heart rate signal according to the physiological signal. Accordingly, the exercise physiological sensing system can effectively improve the stability of the detected physiological signal during exercise.
Abstract:
The disclosure provides a method and system for detecting an anaerobic threshold heart rate. After first physiological data, second physiological data and third physiological data are obtained while a user is exercising, an interval of the third physiological data corresponding to an estimated range of first physiological data and a turning point of a curve fitting the third physiological data within the interval are obtained, to determine the anaerobic threshold heart rate of a user.
Abstract:
An exercise physiological sensing system, a motion artifact suppression processing method and a motion artifact suppression processing device for obtaining a stable exercise heart rate signal of a user during exercise are provided. The exercise physiological sensing system includes a bone conduction object, a signal-to-noise ratio analysis module, and a computation module. The bone conduction object has a physiological sensor. The physiological sensor detects a physiological signal of otic bones of the user. The signal-to-noise ratio analysis module is coupled to the physiological sensor and detects a stability of the physiological signal of the otic bones. The computation module is coupled to the signal-to-noise ratio analysis module and generates the stable exercise heart rate signal according to the physiological signal of the otic bones. Accordingly, the exercise physiological sensing system can effectively improve the detected stability of an exercise physiological signal.
Abstract:
A system and a method of multi-user coaching are introduced herein. Motion-sensing cameras are applied to capture images, and a depth image stitching module is applied to perform a depth image stitching process on the captured images to expand the motion-sensing range, so as to establish a virtual environment for multi-user coaching. Each user can be coached individually by a one-to-multiple approach to improve his or her motions. By using the system and the method of multi-user coaching, that is, the system can only calculates on motion similarities of the users, and instructions are fed back to each user. Therefore, the system and the method described herein can be extensively applied to various products, such as a virtual gymnasium, a virtual aerobics classroom, a virtual Budokan, and so on.