Abstract:
A pressure sensor with calibration device includes a casing, a diaphragm, a sensing element, a medium, and at least one calibration element. The diaphragm is disposed on the casing, wherein the casing and the diaphragm define an accommodating space. The sensing element is disposed in the casing. The medium is filled in the accommodating space and in contact with the sensing element. The at least one calibration element is adjustably disposed at the casing and extended into the accommodating space to be in contact with the medium, wherein when the at least one calibration element is moved relative to the casing in a direction toward the accommodating space or in a direction away from the accommodating space, the at least one calibration element changes the pressure applied to the medium. The pressure sensor with calibration device adjusts the pressure value sensed by the sensing element via the calibration element.
Abstract:
A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
Abstract:
A MEMS apparatus comprising composite vibrating unit and the manufacturing method thereof are disclosed. The vibrating unit includes a stiffness element on which a first material is disposed. A second material being a conductive material is disposed on the first material and is extended to the stiffness element to remove electric charge on first material. When a temperature is changed, a variation direction of a Young's modulus of the first material is opposite to a variation direction of a Young's modulus of the stiffness element. The unique attributes above allow vibrating unit of the MEMS apparatus such as resonator and gyroscope to have stable resonance frequency against the change of temperature.
Abstract:
A force measurement apparatus adapted to be installed on a pile includes at least one pressing ring and a plurality of force sensors. The pressing ring includes a ring body and at least one pressing part. The ring body has at least one end and an inner surface facing the pile. The pressing part is disposed at the end. The force sensor is disposed between the inner surface of the ring body and the pile so as to sense a radial deformation and the degree of eccentricity of the pile.
Abstract:
A pressure sensor with calibration function includes a casing, a diaphragm, a sensing element, a medium, and at least one calibration element. The diaphragm is disposed on the casing, wherein the casing and the diaphragm define an accommodating space. The sensing element is disposed in the casing. The medium is filled in the accommodating space and in contact with the sensing element. The at least one calibration element is adjustably disposed at the casing and extended into the accommodating space to be in contact with the medium, wherein when the at least one calibration element is moved relative to the casing, the at least one calibration element changes the pressure applied to the medium.
Abstract:
A micro-electromechanical apparatus with multiple chambers and a method for manufacturing the same are provided, wherein various micro-electromechanical sensors are integrated into a single apparatus. For example, the micro-electromechanical apparatus in this disclosure may have two independent hermetically sealed chambers with different pressures, such that a micro-electromechanical barometer and a micro-electromechanical accelerometer can be operated in an optimal pressure circumstance.
Abstract:
A MEMS apparatus comprising composite vibrating unit and the manufacturing method thereof are disclosed. The vibrating unit includes a stiffness element on which a first material is disposed. A second material being a conductive material is disposed on the first material and is extended to the stiffness element to remove electric charge on first material. When a temperature is changed, a variation direction of a Young's modulus of the first material is opposite to a variation direction of a Young's modulus of the stiffness element. The unique attributes above allow vibrating unit of the MEMS apparatus such as resonator and gyroscope to have stable resonance frequency against the change of temperature.