Abstract:
A probe card includes a flexible inorganic material layer, a metal micro structure, and a circuit board. The flexible inorganic material layer has a first surface and a second surface opposite to each other. The metal micro structure is disposed on the first surface. The circuit board is disposed on the second surface, and the circuit board is electrically connected to the metal micro structure. The test signal is adapted to be conducted to the circuit board through the flexible inorganic material layer.
Abstract:
A probe card includes a flexible inorganic material layer, a metal micro structure, and a circuit board. The flexible inorganic material layer has a first surface and a second surface opposite to each other. The metal micro structure is disposed on the first surface. The circuit board is disposed on the second surface, and the circuit board is electrically connected to the metal micro structure. The test signal is adapted to be conducted to the circuit board through the flexible inorganic material layer.
Abstract:
A metal patch suitable for connecting a high-power element and a substrate is provided. The metal patch includes an intermediate metal layer, two first metal layers, and two second metal layers. The first metal layers are respectively disposed on two opposite surfaces of the intermediate metal layer. The intermediate metal layer is located between the first metal layers. The melting point of each of the first metal layers is greater than 800° C. The second metal layers are respectively disposed on the first metal layers. The intermediate metal layer and the first metal layers are located between the second metal layers. The material of each of the second metal layers includes an indium-tin alloy. Each of the first metal layers and the corresponding second metal layer can generate an intermetal via a solid-liquid diffusion reaction.
Abstract:
A metal circuit structure is provided. The metal circuit structure includes a substrate, a first trigger layer and a first metal circuit layer. The first trigger layer is disposed on the substrate and includes a first metal circuit pattern. The first metal circuit layer is disposed on the first circuit pattern and is electrically insulated from the substrate. The composition of the first trigger layer includes an insulating gel and a plurality of trigger particles. The trigger particles are at least one of organometallic particles, a chelation and a semiconductor material having an energy gap greater than or equal to 3 eV. The trigger particles are disposed in the insulating gel, such that the dielectric constant of the first trigger layer after curing is between 2 and 6.5.
Abstract:
A metal circuit structure is provided. The metal circuit structure includes a substrate, a first trigger layer and a first metal circuit layer. The first trigger layer is disposed on the substrate and includes a first metal circuit pattern. The first metal circuit layer is disposed on the first circuit pattern and is electrically insulated from the substrate. The composition of the first trigger layer includes an insulating gel and a plurality of trigger particles. The trigger particles are at least one of organometallic particles, a chelation and a semiconductor material having an energy gap greater than or equal to 3 eV. The trigger particles are disposed in the insulating gel, such that the dielectric constant of the first trigger layer after curing is between 2 and 6.5.
Abstract:
A metal circuit structure, a method for forming a metal circuit and a liquid trigger material for forming a metal circuit are provided. The metal circuit structure includes a substrate, a first trigger layer and a first metal circuit layer. The first trigger layer is disposed on the substrate and includes a first metal circuit pattern. The first metal circuit layer is disposed on the first circuit pattern and is electrically insulated from the substrate. The composition of the first trigger layer includes an insulating gel and a plurality of trigger particles. The trigger particles are at least one of organometallic particles, a chelation and a semiconductor material having an energy gap greater than or equal to 3 eV. The trigger particles are disposed in the insulating gel, such that the dielectric constant of the first trigger layer after curing is between 2 and 6.5.
Abstract:
A beam antenna comprising a first material layer, a second material layer, a first radiating conductor unit and an energy transmission conductor layer is provided. The first material layer has a signal source and a first conductor layer. The second material layer has a first thin-film layer, where the first thin-film layer is adhered on a surface of the second material layer. The first thin-film layer further comprises an insulating gel and a plurality of trigger particles. The first radiating conductor unit is adhered on a surface of the first thin-file layer, and the first thin-file layer is located between the first radiating conductor unit and the second material layer. The energy transmission conductor structure is disposed between the first and the second material layers, which has a first terminal and a second terminal that electrically coupled or connected to the signal source and the first radiating conductor unit respectively.
Abstract:
A three-dimensional circuit board, including a ceramic substrate and multiple circuits, is provided. The ceramic substrate has a first plane, a second plane, a third plane located between the first plane and the second plane, a first side surface connecting the first plane and the second plane, and a second side surface connecting the first plane and the third plane and opposite to the first side surface. A first height of the first side surface is greater than a second height of the second side surface. The circuits are separately embedded on the first plane of the ceramic substrate and extend along the first side surface to be embedded on the second plane.
Abstract:
A tactile sensor including an elastic dielectric layer, first ribbon electrodes, and second ribbon electrodes is provided. The elastic dielectric layer has a first surface and a second surface opposite to each other. The first ribbon electrodes are disposed on the first surface. Each of the first ribbon electrodes extends in a first direction and includes first sensing portions serially connected in the first direction. The second ribbon electrodes are disposed on the second surface. Each of the second ribbon electrodes extends in a second direction intersecting the first direction. Each of the first sensing portions has a first extending length in the first direction to cross over N second ribbon electrodes. Each of the first sensing portions has a first edge parallel to the second direction. The first edge is aligned with an edge of one of the second ribbon electrodes. N is a positive integer greater than 1.
Abstract:
A beam antenna comprising a first material layer, a second material layer, a first radiating conductor unit and an energy transmission conductor layer is provided. The first material layer has a signal source and a first conductor layer. The second material layer has a first thin-film layer, where the first thin-film layer is adhered on a surface of the second material layer. The first thin-film layer further comprises an insulating gel and a plurality of trigger particles. The first radiating conductor unit is adhered on a surface of the first thin-file layer, and the first thin-file layer is located between the first radiating conductor unit and the second material layer. The energy transmission conductor structure is disposed between the first and the second material layers, which has a first terminal and a second terminal that electrically coupled or connected to the signal source and the first radiating conductor unit respectively.