Abstract:
Provided are a pharmaceutical composition for preventing or treating inflammatory disease, autoimmune disease, graft rejection responses, or combinations thereof, the pharmaceutical composition including a compound represented by Formula 1, or a stereoisomer, derivative, solvate, or pharmaceutically acceptable salt thereof, and a method using the pharmaceutical composition. The pharmaceutical composition and the method can be used to effectively prevent or treat inflammatory disease, autoimmune disease, graft rejection responses, or combinations thereof.
Abstract:
The present invention relates to a gas turbine device using a supercritical fluid as a cooling fluid, the gas turbine device having a compressor for compressing air, a combustor for burning the air emitted from the compressor and fuel, and a turbine driven by the burned gas emitted from the combustor, wherein the gas turbine device includes cooling passages formed in the combustor and the turbine, along which the supercritical fluid as a cooling fluid flows to allow the combustor and the turbine to be cooled.
Abstract:
Provided are a carrier for a dry adsorbent for carbon dioxide, including spherical silica whose surface is engraved in the form of nanowires, and a method for preparing the same. Although the carrier for a dry adsorbent for carbon dioxide including spherical silica that has nanowires on the surface thereof has a very non-uniform shape, it serves better as a host structure adsorbing carbon dioxide as compared to the conventional carrier for a carbon dioxide adsorbent, and thus may be used for a host-guest adsorbent applicable to a fluidized bed process. In addition, the method for preparing a carrier for a carbon dioxide adsorbent provides nanowire-coated silicon spheres having an increased surface roughness and an increased surface area, thereby providing increased carbon dioxide capturing efficiency. Further, since the method for forming nanowires is simple, it is easy to carry out mass production without any separate process, thereby providing excellent cost efficiency.
Abstract:
The present disclosure relates to a pharmaceutical composition for preventing or treating statin-induced adverse effects or a pharmaceutical composition for co-administration with statin, the pharmaceutical composition containing, as an active ingredient, at least one selected from the group consisting of an isoprenoid-based compound, zaragozic acid, terbinafine, and ketoconazole. The pharmaceutical composition according to the present disclosure may prevent and/or treat adverse statin effects that can be induced by statin, that is, can be induced at any time by oxisterols present at abnormal levels in the body. The pharmaceutical composition can not only treat but also prevent the adverse effects of various statin therapeutics whose use has recently increased rapidly, and thus it is expected that the pharmaceutical composition can be widely used for various diseases and the utilization thereof can further be increased.
Abstract:
The present disclosure relates to a pharmaceutical composition for preventing or treating statin-induced adverse effects or a pharmaceutical composition for co-administration with statin, the pharmaceutical composition containing, as an active ingredient, at least one selected from the group consisting of an isoprenoid-based compound, zaragozic acid, terbinafine, and ketoconazole. The pharmaceutical composition according to the present disclosure may prevent and/or treat adverse statin effects that can be induced by statin, that is, can be induced at any time by oxisterols present at abnormal levels in the body. The pharmaceutical composition can not only treat but also prevent the adverse effects of various statin therapeutics whose use has recently increased rapidly, and thus it is expected that the pharmaceutical composition can be widely used for various diseases and the utilization thereof can further be increased.
Abstract:
The present disclosure relates to a pharmaceutical composition for preventing or treating statin-induced adverse effects or a pharmaceutical composition for co-administration with statin, the pharmaceutical composition containing, as an active ingredient, at least one selected from the group consisting of an isoprenoid-based compound, zaragozic acid, terbinafine, and ketoconazole. The pharmaceutical composition according to the present disclosure may prevent and/or treat adverse statin effects that can be induced by statin, that is, can be induced at any time by oxisterols present at abnormal levels in the body. The pharmaceutical composition can not only treat but also prevent the adverse effects of various statin therapeutics whose use has recently increased rapidly, and thus it is expected that the pharmaceutical composition can be widely used for various diseases and the utilization thereof can further be increased.
Abstract:
The present invention relates to a composition for preventing or treating chronic allograft dysfunction, comprising bisphosphonate which is used as a therapeutic agent for osteoporosis. The composition for preventing or treating chronic allograft dysfunction, comprising bisphosphonate, according to the present invention has an excellent prophylactic and/or therapeutic effect on chronic allograft dysfunction caused by a gradual decrease in the function of a transplanted tissue or organ which occurs after tissue or organ transplantation surgery, and thus is expected to be able to remarkably increase a long-term survival after transplantation surgery.
Abstract:
Provided are a carrier for a dry adsorbent for carbon dioxide, including spherical silica whose surface is engraved in the form of nanowires, and a method for preparing the same. Although the carrier for a dry adsorbent for carbon dioxide including spherical silica that has nanowires on the surface thereof has a very non-uniform shape, it serves better as a host structure adsorbing carbon dioxide as compared to the conventional carrier for a carbon dioxide adsorbent, and thus may be used for a host-guest adsorbent applicable to a fluidized bed process. In addition, the method for preparing a carrier for a carbon dioxide adsorbent provides nanowire-coated silicon spheres having an increased surface roughness and an increased surface area, thereby providing increased carbon dioxide capturing efficiency. Further, since the method for forming nanowires is simple, it is easy to carry out mass production without any separate process, thereby providing excellent cost efficiency.