Abstract:
A thin film transistor substrate includes a substrate, a first conductive element and a semiconductor. The first conductive element is disposed on the substrate and includes a trace portion extending along a first direction and a protrusive portion extending from the trace portion. The semiconductor is disposed on the substrate. The trace portion has a first edge and a second edge opposite to the first edge, and the protrusive portion has at least one curved edge connecting with the second edge. In a top view, a virtual extending line disposes between the trace portion and the protrusive portion, the virtual extending line overlaps the second edge. At least a part of the semiconductor extends beyond the virtual extending line along a second direction vertical to the first direction.
Abstract:
A display device is disclosed, which includes: a substrate; a first conductive layer disposed on the substrate and including a gate with a gate edge parallel to a first direction; a semiconductor layer disposed on the first conductive layer; and a second conductive layer disposed on the semiconductor layer and including a drain and a data line extending along the first direction, the second conductive layer electrically connecting to the semiconductor layer, the drain including a drain edge parallel to the first direction, the gate edge located between the data line and the drain edge, and a projection of the drain on the substrate located in a projection of the semiconductor layer on the substrate. Herein, a maximum width of the semiconductor layer overlapping the gate edge along the first direction is smaller than maximum widths thereof overlapping the gate and the drain edge along the first direction.
Abstract:
A display panel includes a first substrate having a first alignment film, a second substrate having a second alignment film and plural spacers, a liquid crystal layer disposed between the first and second substrates, and a plurality of agglomerates positioned between the first and second alignment films and further surrounding at least one of the spacers. The spacers maintain a uniform gap between the first and second substrates. The second alignment film is disposed oppositely to the first alignment film and covers the spacers. In one embodiment, sizes of the agglomerates are distributed in a range of 0.1 μm˜2 μm.
Abstract:
A transistor substrate is provided. The transistor substrate includes a plurality of data lines and a plurality of scan lines. The scan lines intersect with the data lines to define a plurality of pixel units. One of the pixel units includes a first electrode, a second electrode and a switching transistor. The first electrode has a slit including a major axis portion and a curved portion connected to the major axis portion. One of the first electrode and the second electrode is used for receiving a pixel voltage signal, and the other is used for receiving a common voltage signal. The switching transistor includes a switching electrode. The switching electrode and the curved portion of the slit have an overlapping region, and an area of the overlapping region is 0.2 times to 0.8 times an area of the curved portion.
Abstract:
In a display device, the display device includes a substrate, a first conductive layer, a second conductive layer, a semiconductor layer, an opposite substrate and a display medium layer. The first conductive layer is disposed on the substrate and includes a trace portion extending along a first direction and a protrusive portion extending from the trace portion. The second conductive layer is disposed on the first conductive layer and includes a wiring portion extending along a second direction. The semiconductor layer is disposed on the substrate. When viewed in a third direction perpendicular to the first direction and the second direction, an interface disposes between the trace portion and the protrusive portion, a virtual extending line overlaps the second edge and the interface, and the semiconductor layer extends beyond the virtual extending line. The display medium layer is disposed between the substrate and the opposite substrate.
Abstract:
A display panel includes an active area and a peripheral area surrounding the active area, and includes first and second substrates, a shading layer and an adhesive agent. The second substrate is disposed opposite the first substrate. The shading layer is disposed on the first substrate and corresponds to the peripheral area. The shading layer includes a first contact surface contacting with the first substrate, the first contact surface has a first edge. The adhesive agent is disposed between the first substrate and the second substrate and corresponds to the shading layer. The adhesive agent includes two second contact surfaces respectively facing the first substrate and the second substrate, one of the second surfaces has a second edge near the active area, and the line edge roughness of the second edge is greater than that of the first edge.
Abstract:
A thin film transistor substrate includes a substrate, a first conductive layer, a second conductive layer and a semiconductor layer. The first conductive layer is disposed on the substrate and includes a trace portion extending along a first direction and a protrusive portion extending from the trace portion. The second conductive layer is disposed on the first conductive layer and includes a wiring portion extending along a second direction. The trace portion has a first edge and a second edge opposite to the first edge, and the protrusive portion has at least one curved edge connecting with the second edge. When viewed in a third direction perpendicular to the first direction and the second direction, an interface disposes between the trace portion and the protrusive portion, a virtual extending line overlaps the second edge and the interface, and the semiconductor layer extends beyond the virtual extending line.
Abstract:
A transistor substrate is provided. The transistor substrate includes a plurality of data lines and a plurality of scan lines, wherein the scan lines intersects with the data lines to define a plurality of pixel units. One of the pixel units includes a first electrode having a slit substantially parallel to the data lines. The pixel units include a second electrode and a switching transistor. The switching transistor includes a gate electrode connecting to one of the scan lines. The gate electrode has a first edge substantially parallel to the extending direction of the scan lines. The switching transistor includes a drain electrode electrically connected to one of the first electrode and the second electrode. The drain electrode includes an extending portion which extends toward the slit and extends away from an extending line of the first edge. The drain electrode and the slit have an overlapping region.
Abstract:
A display panel includes a first substrate, and the first substrate includes a base plate; a first conductive line disposed on the base plate and extending along the first direction; a second conductive line and a third conductive line disposed on the base plate and extending along the second direction; a contact pad positioned between the second and third conductive lines; a semi-conductive layer connecting the contact pad and the second conductive line, and the semi-conductive layer having a thickness d; and a pixel electrode connecting the contact pad. The semi-conductive layer has a channel width W (μm) and a channel length L (μm) between the contact pad and the second conductive line, and a pixel distance Px (μm) between the second and third conductive lines along the first direction, wherein the channel width W is conformed to the following equation: ( 3.035 - 1.5 ) ≤ W - 0.008 × ( P x × L d ) ≤ ( 3.035 + 1.5 ) .
Abstract:
A display panel includes a first substrate, a second substrate and a display medium. At least one spacer is formed on the top surface of the first substrate and is disposed between the first substrate and the second substrate. An alignment film is formed on the first substrate and covers the spacer. The spacer has a first width and a second width in a direction perpendicular to a normal vector of the first substrate. The location of the second width is nearer to the first substrate than that of the first width. The second width is smaller than the first width. The alignment film has a first thickness at the location of the spacer having the first width and has a second thickness at the location of the spacer having the second width. The second thickness is greater than the first thickness.