Abstract:
An electronic device may be provided that includes a first controller, a second controller, and a bus to connect between the first controller and the second controller. The electronic device may also include a first signal line between the first controller and the second controller, and the first controller to provide a first signal on the first signal line to the second controller to wake up the second controller from a low power mode.
Abstract:
Embodiments are generally directed to sharing of environmental data for client device usage. An embodiment of a client device includes a processor; an environmental sensor to sense an environmental condition, an output of the sensor being a local environmental sensor value; and a wireless receiver to receive environmental data for a certain proximity area from a second client device according to an environmental data sharing protocol via a wireless network. The environmental data sharing protocol allows receipt of the environmental data without requiring pairing, bonding, or other relationship of client devices.
Abstract:
An electronic device may be provided that includes a first controller, a second controller, and a bus to connect between the first controller and the second controller. The electronic device may also include a first signal line between the first controller and the second controller, and the first controller to provide a first signal on the first signal line to the second controller to wake up the second controller from a low power mode.
Abstract:
In one embodiment an apparatus includes a multiplicity of processor components; one or more device components communicatively coupled to one or more processor components of the multiplicity of processor components; and a controller comprising logic at least a portion of which is in hardware, the logic to schedule one or more forced idle periods interspersed with one or more active periods, a forced idle period spanning a duration during which the multiplicity of processor components and the one or more device components are simultaneously placed in respective idle states that define a forced idle power state during isolated sub-periods of the forced idle period. Other embodiments are disclosed and claimed.
Abstract:
In one embodiment an apparatus includes a multiplicity of processor components; one or more device components communicatively coupled to one or more processor components of the multiplicity of processor components; and a controller comprising logic at least a portion of which is in hardware, the logic to schedule one or more forced idle periods interspersed with one or more active periods, a forced idle period spanning a duration during which the multiplicity of processor components and the one or more device components are simultaneously placed in respective idle states that define a forced idle power state during isolated sub-periods of the forced idle period. Other embodiments are disclosed and claimed.