Abstract:
An integrated circuit package is disclosed. The integrated circuit package includes a first integrated circuit die, a second integrated circuit die, an organic substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the organic substrate, a multi-die interconnect bridge (EMIB) embedded within the organic substrate, and a termination resistor associated with a circuit in the first integrated circuit die, wherein the termination resistor is located within the multi-die interconnect bridge embedded within the organic substrate.
Abstract:
An integrated circuit package is disclosed. The integrated circuit package includes a first integrated circuit die, a second integrated circuit die, an organic substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the organic substrate, a multi-die interconnect bridge (EMIB) embedded within the organic substrate, and a termination resistor associated with a circuit in the first integrated circuit die, wherein the termination resistor is located within the multi-die interconnect bridge embedded within the organic substrate.
Abstract:
An integrated circuit package is disclosed. The integrated circuit package includes a first integrated circuit die, a second integrated circuit die, an organic substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the organic substrate, a multi-die interconnect bridge (EMIB) embedded within the organic substrate, and a termination resistor associated with a circuit in the first integrated circuit die, wherein the termination resistor is located within the multi-die interconnect bridge embedded within the organic substrate.
Abstract:
Techniques of forming a transmitter coil are described herein. The techniques may include forming turns of the transmitter coil, wherein a non-uniform spacing between the turns of the transmitter coil is to reduce a magnetic field variation associated with the transmitter coil.
Abstract:
An integrated circuit package is disclosed. The integrated circuit package includes a first integrated circuit die, a second integrated circuit die, an organic substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the organic substrate, a multi-die interconnect bridge (EMIB) embedded within the organic substrate, and a termination resistor associated with a circuit in the first integrated circuit die, wherein the termination resistor is located within the multi-die interconnect bridge embedded within the organic substrate.
Abstract:
Techniques for focusing the energy radiated by a wireless power transmitting unit are described. An example power transmitting unit includes a transmit coil configured to generate a magnetic field to wirelessly power a device within an active wireless charging area. The power transmitting unit also includes a power generating circuitry to deliver current to the transmit coil to generate the magnetic field. The power transmitting unit also includes a patch array disposed in parallel with the transmit coil to reduce the strength of the magnetic field at frequencies outside of the operating frequency during operation of the power transmitting unit.
Abstract:
Techniques of forming a wireless power receiving unit are described herein. The techniques may include forming a first receiving coil of a device to be charged by inductive coupling to a first transmitting coil. The techniques may include forming a second receiving coil of a device to be charged by inductive coupling to a second transmitting coil. The second receiving coil is disposed at an angle to a plane of the first receiving coil, and the first receiving coil and the second receiving coil are formed to connected in parallel to a receiving circuit.
Abstract:
This disclosure pertains to wireless power transfer systems, and in particular (but not exclusively), to techniques to improve the coupling efficiency between a power transmitting unit and a power receiving unit within a computing device. The present disclosure includes a system which comprises a computing unit which includes a power receiving unit and a conductive surface. The conductive surface has an opening that is adjacent to the power receiving unit and a slot extending from the opening towards the perimeter of the conductive surface. The computing unit further includes a system base coupled to the power receiving unit wherein the power receiving unit is to provide power to the system base. The system also includes a power transmitting unit adjacent to the computing unit.
Abstract:
This disclosure pertains to wireless-power transfer systems, and in particular (but not exclusively), to techniques to improve the coupling efficiency between a power transmitting unit and a power receiving unit within a computing system. The present disclosure includes a system which comprises a computing unit and a power transmitting unit adjacent thereto. The computing unit includes a system base, a conductive surface, and a power receiving unit. The conductive surface may have an opening that is adjacent to the power receiving unit and a slot extending from the opening towards the perimeter of the conductive surface. The system base may be coupled to the power receiving unit. The power receiving unit provides power to the system base.
Abstract:
Techniques for focusing an energy radiated by a wireless power transmitting unit are described. An example power transmitting unit includes a transmit coil configured to generate a magnetic field to wirelessly power a device within an active wireless charging area. The power transmitting unit also includes a power generating circuitry to deliver a current to the transmit coil to generate the magnetic field. The power transmitting unit also includes a patch array disposed in parallel with the transmit coil to reduce a strength of the magnetic field at frequencies outside of the operating frequency during operation of the power transmitting unit.