Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless power transfer. For example, a Wireless Power Receiver (WPR) may include a rectifier to convert a wireless charging signal received from Wireless Power Transmitter (WPT into a Direct Current (DC) power signal; a voltage regulator to regulate a voltage of the DC power signal according to a voltage range; a bypass path to bypass the voltage regulator; and a bypass controller to select between directing the DC power signal to the voltage regulator or to the bypass path, based on a voltage level of the DC power signal and the voltage range.
Abstract:
Systems and methods for power distribution allocation are provided. A system may establish a first wireless connection between the system and a first mobile device. The system may receive a first power request from the first mobile device, the first power request associated with a first minimum energy charge of the first mobile device, and may determine an available charging capacity of the charging system. The system may determine a first energy charge to provide wirelessly to the first mobile device, and may establish a second wireless connection with a second mobile device. The system may receive a second power request from the second mobile device, and may receive a first charge indicator from the first mobile device associated with a present charging status of the first mobile device. The system may determine a second energy charge to provide wirelessly to the second mobile device.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless power transfer. For example, a Wireless Power Receiver (WPR) may include a rectifier to convert a wireless charging signal received from Wireless Power Transmitter (WPT into a Direct Current (DC) power signal; a voltage regulator to regulate a voltage of the DC power signal according to a voltage range; a bypass path to bypass the voltage regulator; and a bypass controller to select between directing the DC power signal to the voltage regulator or to the bypass path, based on a voltage level of the DC power signal and the voltage range.
Abstract:
An electronic data tablet has a controller and transition manager. The controller is to store in a memory of the tablet virtual configuration space information for a peripheral device of a computer, and the transition manager is to control the controller to operate in a first mode and a second mode. The virtual configuration space information is stored in the tablet memory when the first mode is to be switched to the second mode. When the second mode is switched to the first mode, the virtual configuration space information is accessed to control recognition of the peripheral device of the computer without performing a re-scanning operation.
Abstract:
Techniques of load modulation are described herein. A wireless power transmitting unit may include a resonator to periodically transmit a short beacon having a first time period. The wireless power transmitting unit also includes circuitry coupled to the resonator. The circuitry is configured to detect a load change in the resonator when transmitting the short beacon and cause the resonator to transmit a long beacon subsequent to said transmitting the short beacon if said load change is detected. The long beacon has a second time period longer than the first time period.
Abstract:
Methods and apparatus relating to a programmable scalable voltage translator are described. In one embodiment, logic translates an input voltage level into a plurality of output voltage levels during a low power consumption state of a device. Other embodiments are also disclosed and claimed.
Abstract:
Systems and methods for power distribution allocation are provided. A system may establish a first wireless connection between the system and a first mobile device. The system may receive a first power request from the first mobile device, the first power request associated with a first minimum energy charge of the first mobile device, and may determine an available charging capacity of the charging system. The system may determine a first energy charge to provide wirelessly to the first mobile device, and may establish a second wireless connection with a second mobile device. The system may receive a second power request from the second mobile device, and may receive a first charge indicator from the first mobile device associated with a present charging status of the first mobile device. The system may determine a second energy charge to provide wirelessly to the second mobile device.