Abstract:
An integrated circuit chip can include an interference mitigator. The interference mitigator can be to modify encoding to generate a cancellation pattern for optimum cancellation of radio frequency interference (RFI) at the effective mid-point of the data bus. The interference mitigator can also be to transmit the generated cancellation pattern across the data bus to cancel the radio frequency interference.
Abstract:
An apparatus that enables baseband time domain cancellation of data bus interference is described herein. The apparatus includes a wireless receiver and a cancellator. The cancellator is to determine an estimate of wireless interference in a baseband time domain on data to be received by the wireless receiver and to subtract the estimate of wireless interference from the data.
Abstract:
A computing device can include a radio receiver to receive a radio signal from a radio transmitter of a second computing or communication device. The radio receiver can experience radio frequency interference. The computing device can also include a digital signal generator. The digital signal generator can be to process a signal (S1) underlying a source of the radio frequency interference. The digital signal generator can also be to generate a digital signal (S1). The digital signal generator can further be to inject the digital signal (S1) into the radio receiver to cancel the radio frequency interference around the radio frequency of interest.
Abstract:
Described is an apparatus having a non-linear control to manage power supply droop at an output of a voltage regulator. The apparatus comprises: a first inductor for coupling to a load; a capacitor, coupled to the first inductor, and for coupling to the load; a first high-side switch couple to the first inductor; a first low-side switch coupled to the first inductor; a bridge controller to control when to turn on and off the first high-side and first low-side switches; and a non-linear control (NLC) unit to monitor output voltage on the load, and to cause the bridge controller to turn on the first high-side switch and turn off the first low-side switch when a voltage droop is detected on the load.
Abstract:
Techniques for reducing the spectral content of a data bus are described herein. An example of a device in accordance with the present techniques includes logic to obtain a present bit of data to be transmitted over a data bus and estimate a spectral energy contribution of the present bit at a frequency of interest. The device also includes logic to determine what effect inverting the present bit will have on a net spectral energy of the data bus at the frequency of interest when the present bit is transmitted over the data bus. The device also includes logic to invert the present bit to generate an inverted bit and transmit the inverted bit over the data bus if inverting the present bit reduces the net spectral energy of the data bus at the frequency of interest.