Abstract:
A correction circuit (200) for providing at least one correction parameter (206) for correcting channel state information includes: a first input (201) for receiving at least one transport performance indicator (202) indicating a transport performance of data received over a radio channel; a second input (203) for receiving channel state information (204); and an output (205) for providing the at least one correction parameter (206) based on a relationship between the at least one transport performance indicator (202) and the channel state information (204).
Abstract:
According to an example, a communication device is described comprising a receiver configured to receive a signal, a divider configured to divide the signal into signal components, an estimator configured to estimate, for each signal component, an expected processing error which is made when, instead of a first processing scheme, a second processing scheme is used to process the signal component, wherein the first has a higher processing effort than the second, a determiner configured to determine, for each signal component, whether to process the signal component by the first or by the second processing scheme based on the expected processing errors.
Abstract:
A method and apparatus for receive beam-forming in an analog domain. A user equipment may perform channel estimation for obtaining a set of channel responses for a plurality of antennas of the UE. The UE may determine a beamforming codeword for receive beamforming based on the set of channel responses. The UE may apply a training codeword to the received signal in analog domain. The training codeword includes phase adjustment coefficients for each antenna and a different training codeword may be applied for each channel observation. The UE may measure a metric for at least one candidate codeword based on the set of channel responses and determine the beamforming codeword based on the metric.
Abstract:
A radio communication device is described comprising: a receiver configured to receive radio signals on a radio channel; a noise level determination circuit configured to determine a noise level of the radio signals; an interference determination circuit configured to determine interference information indicating an amount of interference of the radio signals with other signals; an equalizer configured to determine a softbit based on the radio signals and based on the noise level; and a scaling circuit configured to scale based on the determined interference information at least one of the noise level or the softbit.
Abstract:
A method includes receiving at a receiver circuit a composite signal including non-interfered data resource elements and interfered data resource elements from a plurality of radio cells, and determining a first mutual information metric based on the non-interfered data resource elements. The method further includes determining a second mutual information metric based on the interfered data resource elements, and determining effective mutual information based on a combination of the first mutual information metric and the second mutual information metric.
Abstract:
A method and apparatus for receive beam-forming in an analog domain. A user equipment may perform channel estimation for obtaining a set of channel responses for a plurality of antennas of the UE. The UE may determine a beamforming codeword for receive beamforming based on the set of channel responses. The UE may apply a training codeword to the received signal in analog domain. The training codeword includes phase adjustment coefficients for each antenna and a different training codeword may be applied for each channel observation. The UE may measure a metric for at least one candidate codeword based on the set of channel responses and determine the beamforming codeword based on the metric.
Abstract:
A method (300) for determining channel state information includes: receiving (301) a downlink signal, wherein the downlink signal comprises a transport block comprising a plurality of code blocks, each code block of the plurality of code blocks comprising a plurality of resource elements; determining (302) a worst case code block of the plurality of code blocks based on at least one of noise or interference experienced by the plurality of resource elements of the respective code blocks; and determining (303) a metric indicative of a channel state information based on the worst case code block.
Abstract:
A method includes providing a plurality of sets of equalizer taps, wherein each set is coupled to a respective one of a plurality of antenna ports; assigning a first plurality of equalizer taps of the sets of equalizer taps to a first subset; determining a first covariance measure associated with the first plurality of equalizer taps of the first subset based on a first correlation criterion; assigning a second plurality of equalizer taps of the sets of equalizer taps to a second subset; and determining a second covariance measure associated with the second plurality of equalizer taps of the second subset based on a second correlation criterion.
Abstract:
A method (300) for determining channel state information includes: receiving (301) a downlink signal, wherein the downlink signal comprises a transport block comprising a plurality of code blocks, each code block of the plurality of code blocks comprising a plurality of resource elements; determining (302) a worst case code block of the plurality of code blocks based on at least one of noise or interference experienced by the plurality of resource elements of the respective code blocks; and determining (303) a metric indicative of a channel state information based on the worst case code block.
Abstract:
The disclosure relates to a baseband processing method, comprising: receiving a downlink (DL) baseband (BB) signal in a transmission time interval (TTI), wherein the DL BB signal comprises a time-frequency resource comprising a control section and a data section; decoding at least part of the control section to detect a DL grant information; if the DL grant information is detected, determine a number of granted data resource blocks from the DL grant information; and adjust at least one of a clock rate and supply voltage of the baseband processing based on the number of granted resource blocks.