Abstract:
An system and method are configured to degrade a memory cell PFET voltage based on a sensor reading of a current operating point. This will enable additional control over the SRAM device, particularly during a write operation. In one embodiment, a system of SRAM memory devices is configured as a smart sensor with real-time corrective circuit action. The system and method samples write and read timing operations and is adaptable by performing real-time corrective action. The degrading of PFET voltage to reduce it strength and improve write characteristics include an implementation that includes a charge pump controllable for altering by decreasing a voltage applied to the PFET of a selected memory cell. In a further embodiment, an edge detector is built into the circuit that real-time assesses the strength of the memory write operation. In a further implementation, control logic functions as a Finite State Machine.
Abstract:
An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
Abstract:
An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
Abstract:
A clock driver is provided. The clock driver includes a multi-stage delay cell having an input, a positive pulse driving branch, a negative pulse driving branch, and an output. The input is for receiving an original version of a reference clock signal input to the clock driver and used to generate a global clock signal. The output is connected to the positive pulse driving branch and the negative pulse driving branch. The clock driver further includes a pulse generator having positive and negative pulse generator portions respectively connected to outputs of the positive and negative pulse driving branches. The pulse generator generates, at any given time, one of a positive pulse and a negative pulse responsive to a positive pulse enable signal and a negative pulse enable signal, respectively, and the original version of the reference clock signal input to the clock driver without modification.
Abstract:
A computing circuit that includes clocked circuitry, a controller, and a clock generator. The clocked circuitry is configured to receive data and to perform data manipulation on the data based on a first clock signal. The controller is configured to control the transmission of the data to the clocked circuitry. The clock generator is configured to receive as inputs a second clock signal and a delay control signal from the controller, and to delay the second clock signal to generate the first clock signal. The clock generator includes a main delay component configured to receive the second clock signal and to output the first clock signal. The clock generator also includes a switchable delay component connected in parallel with the main delay component, where the switchable delay component is configured to receive as an input the delay control signal from the controller.
Abstract:
A clock driver and corresponding method are provided. The clock driver includes a multi-stage delay cell having logic circuitry and a plurality of serially connected delay elements. An input of the delay elements receives an original version of a reference clock signal input to the clock driver and used to generate a global clock signal. An output of the delay elements connects to positive and negative pulse driving branches formed from the logic circuitry. The clock driver further includes a pulse generator forming positive and negative pulse generator portions respectively connected to outputs of the positive and negative pulse driving branches. The pulse generator generates, at any given time, one of a positive pulse and a negative pulse responsive to a positive pulse enable signal and a negative pulse enable signal, respectively, and the original version of the reference clock signal input to the clock driver without modification.
Abstract:
A mechanism is provided for implementing an operational parameter change within the data processing system based on an identified degradation. One or more degradations existing in the data processing system are identified based on a set of degradation values obtained from a set of degradation sensors. A determination is made as to whether one or more operational parameters need to be modified based on the one or more identified degradations. Responsive to determining that the one or more operational parameters need to be modified based on the one or more identified degradations, an input change is implemented to a one or more control devices in order that the one or more operational parameters are modified.
Abstract:
A mechanism is provided for determining a modeled age of a mufti-core processor. For each core in a set of cores in the multi-core processor, a determination is made of a temperature, a voltage, and a frequency at regular intervals for a set of degradations and a set of voltage domains, thereby forming the modeled age of the multi-core processor. A determination is made as to whether the modeled age of the multi-core processor is greater than an end-of-life value. Responsive to the modeled age of the multi-core processor being greater than an end-of-life value, an indication is sent that the multi-core processor requires replacement.
Abstract:
Guardband validation for a device having a critical path monitor involves first applying multiple calibration settings to the monitor during functional operation of the processor, and recording corresponding guardbands which result in reduced timing margin. A desired guardband can later be selected for validation. The calibration settings can be based on delays for a critical path. A calibration test procedure can be used to determine the calibration delays for different operating frequencies or voltages that are set or, alternatively, the calibration delays can be set and resultant frequencies measured which are used to calculate the guardband amounts. The critical path monitor may include a modified calibration delay circuit which provides a calibrated delay signal to a critical path synthesis circuit, and the multiple calibration settings can be applied by changing delay taps of the calibration delay circuit in response to a bias delay signal from a power management controller.
Abstract:
A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit and a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid. The tunable sector buffer is configured to set latency and slew rate of the clock signal based on an identified resonant or non-resonant mode.