DETERMINING A LOCATION OF A MOBILE DEVICE
    1.
    发明申请
    DETERMINING A LOCATION OF A MOBILE DEVICE 有权
    确定移动设备的位置

    公开(公告)号:US20160021637A1

    公开(公告)日:2016-01-21

    申请号:US14801139

    申请日:2015-07-16

    Abstract: A method and an apparatus for determining a location of a mobile device. The location of a mobile device is determined accurately according to information which includes call data records of the mobile device. By employing a partial ellipse integral model, two physical world factors are taken into consideration in reducing the location uncertainty in call data records. The factors include: spatiotemporal constraints of the device's movement in the physical world and the telecommunication cell area's geometry information, which increase the accuracy of determining the location of a mobile device.

    Abstract translation: 一种用于确定移动设备的位置的方法和装置。 根据包括移动设备的呼叫数据记录的信息,准确地确定移动设备的位置。 通过采用部分椭圆积分模型,在减少呼叫数据记录中的位置不确定性时考虑了两个物理世界因素。 这些因素包括:物理世界中设备移动的时空约束和电信单元区域的几何信息,这增加了确定移动设备位置的准确性。

    Determining location of a user of a mobile device
    2.
    发明授权
    Determining location of a user of a mobile device 有权
    确定移动设备的用户的位置

    公开(公告)号:US09398557B2

    公开(公告)日:2016-07-19

    申请号:US14724877

    申请日:2015-05-29

    Abstract: A method of determining location of a user of a mobile device based on Call Detail Records (CDRs) includes determining data in CDRs related to the user; determining base stations associated with communication locations of the user and corresponding statistical data about communication frequency according to the determined data in the CDRs; and determining location of the user based on at least three determined base stations and the corresponding statistical data about communication frequency as well as physical coordinates of the three base stations.

    Abstract translation: 基于呼叫详细记录(CDR)确定移动设备的用户的位置的方法包括确定与用户相关的CDR中的数据; 根据所述确定的数据确定与所述用户的通信位置相关联的基站和关于通信频率的对应的统计数据; 以及基于至少三个确定的基站和关于通信频率的相应统计数据以及三个基站的物理坐标来确定用户的位置。

    DETERMINING A LOCATION OF A MOBILE DEVICE
    4.
    发明申请
    DETERMINING A LOCATION OF A MOBILE DEVICE 审中-公开
    确定移动设备的位置

    公开(公告)号:US20170013522A1

    公开(公告)日:2017-01-12

    申请号:US15273751

    申请日:2016-09-23

    Abstract: A method and an apparatus for determining a location of a mobile device. The location of a mobile device is determined accurately according to information which includes call data records of the mobile device. By employing a partial ellipse integral model, two physical world factors are taken into consideration in reducing the location uncertainty in call data records. The factors include: spatiotemporal constraints of the device's movement in the physical world and the telecommunication cell area's geometry information, which increase the accuracy of determining the location of a mobile device.

    Abstract translation: 一种用于确定移动设备的位置的方法和装置。 根据包括移动设备的呼叫数据记录的信息,准确地确定移动设备的位置。 通过采用部分椭圆积分模型,在减少呼叫数据记录中的位置不确定性时考虑了两个物理世界因素。 这些因素包括:物理世界中设备移动的时空约束和电信单元区域的几何信息,这增加了确定移动设备位置的准确性。

    LONG STEP AND HEALTHY CREDIT LIMIT ENHANCEMENT BASED ON MARKOV DECISION PROCESSES WITHOUT EXPERIMENTAL DESIGN
    5.
    发明申请
    LONG STEP AND HEALTHY CREDIT LIMIT ENHANCEMENT BASED ON MARKOV DECISION PROCESSES WITHOUT EXPERIMENTAL DESIGN 审中-公开
    基于没有实验设计的MARKOV决策过程的长期和健康信用额度增长

    公开(公告)号:US20170046780A1

    公开(公告)日:2017-02-16

    申请号:US14980570

    申请日:2015-12-28

    CPC classification number: G06Q40/025 G06N7/005 G06N7/08

    Abstract: A method for making a decision of long step and healthy credit limit enhancement. A computer constructs a Markov decision process graph which includes nodes and edges, wherein the nodes represent respective states of one or more customer segments and the edges represent paths based on historical data. The computer applies long step actions for a respective one of the one or more customer segments, wherein the long step actions enhance more than one credit limit levels. The computer calculates gained values of the long step actions. The computer chooses an optimal long step action from the long step actions, wherein the optimal long step action has a maximum gained value.

    Abstract translation: 做出长期稳定信用额度增长决策的方法。 计算机构建包括节点和边缘的马尔可夫决策过程图,其中节点表示一个或多个客户分段的相应状态,并且边缘表示基于历史数据的路径。 计算机对一个或多个客户分段中的相应一个客户分段应用长步骤动作,其中长步骤动作增强多于一个信用限额水平。 计算机计算长步骤动作的获得值。 计算机从长步骤动作中选择最佳的长步骤动作,其中最佳长步骤动作具有最大获得值。

    LONG STEP AND HEALTHY CREDIT LIMIT ENHANCEMENT BASED ON MARKOV DECISION PROCESSES WITHOUT EXPERIMENTAL DESIGN
    7.
    发明申请
    LONG STEP AND HEALTHY CREDIT LIMIT ENHANCEMENT BASED ON MARKOV DECISION PROCESSES WITHOUT EXPERIMENTAL DESIGN 审中-公开
    基于没有实验设计的MARKOV决策过程的长期和健康信用额度增长

    公开(公告)号:US20170046779A1

    公开(公告)日:2017-02-16

    申请号:US14826431

    申请日:2015-08-14

    CPC classification number: G06Q40/025 G06N7/005 G06N7/08

    Abstract: A method, a computer program product, and a computer system for making a decision of long step and healthy credit limit enhancement. A computer constructs a Markov decision process graph which includes nodes and edges, wherein the nodes represent respective states of one or more customer segments and the edges represent paths based on historical data. The computer applies long step actions for a respective one of the one or more customer segments, wherein the long step actions enhance more than one credit limit levels. The computer calculates gained values of the long step actions. The computer chooses an optimal long step action from the long step actions, wherein the optimal long step action has a maximum gained value.

    Abstract translation: 一种方法,计算机程序产品和计算机系统,用于做出长期健康的信用限度增长的决定。 计算机构建包括节点和边缘的马尔可夫决策过程图,其中节点表示一个或多个客户分段的相应状态,并且边缘表示基于历史数据的路径。 计算机对一个或多个客户分段中的相应一个客户分段应用长步骤动作,其中长步骤动作增强多于一个信用限额水平。 计算机计算长步骤动作的获得值。 计算机从长步骤动作中选择最佳的长步骤动作,其中最佳长步骤动作具有最大获得值。

Patent Agency Ranking