Abstract:
A method for improving the SiGe bipolar yield as well as fabricating a SiGe heterojunction bipolar transistor is provided. The inventive method includes ion-implanting carbon, C, into at one of the following regions of the device: the collector region, the sub-collector region, the extrinsic base regions, and the collector-base junction region. In a preferred embodiment each of the aforesaid regions include C implants.
Abstract:
A method for improving the SiGe bipolar yield as well as fabricating a SiGe heterojunction bipolar transistor is provided. The inventive method includes ion-implanting carbon, C, into at one of the following regions of the device: the collector region, the sub-collector region, the extrinsic base regions, and the collector-base junction region. In a preferred embodiment each of the aforesaid regions include C implants.
Abstract:
A raised extrinsic base, silicon germanium (SiGe) heterojunction bipolar transistor (HBT), and a method of making the same is disclosed herein. The heterojunction bipolar transistor includes a substrate, a silicon germanium layer formed on the substrate, a collector layer formed on the substrate, a raised extrinsic base layer formed on the silicon germanium layer, and an emitter layer formed on the silicon germanium layer. The silicon germanium layer forms a heterojunction between the emitter layer and the raised extrinsic base layer. The bipolar transistor further includes a base electrode formed on a portion of the raised extrinsic base layer, a collector electrode formed on a portion of the collector layer, and an emitter electrode formed on a portion of the emitter layer. Thus, the heterojunction bipolar transistor includes a self-aligned raised extrinsic base, a minimal junction depth, and minimal interstitial defects influencing the base width, all being formed with minimal thermal processing. The heterojunction bipolar transistor simultaneously improves three factors that affect the speed and performance of bipolar transistors: base width, base resistance, and base-collector capacitance.
Abstract:
A self-aligned oxide mask is formed utilizing differential oxidation rates of different materials. The self-aligned oxide mask is formed on a CVD grown base NPN base layer which compromises single crystal Si (or Si/SiGe) at active area and polycrystal Si (or Si/SiGe) on the field. The self-aligned mask is fabricated by taking advantage of the fact that poly Si (or Si/SiGe) oxidizes faster than single crystal Si (or Si/SiGe). An oxide film is formed over both the poly Si (or Si/siGe) and the single crystal Si (or Si/siGe) by using an thermal oxidation process to form a thick oxidation layer over the poly Si (or Si/siGe) and a thin oxidation layer over the single crystal Si (or Si/siGe), followed by a controlled oxide etch to remove the thin oxidation layer over the single crystal Si (or Si/siGe) while leaving the self-aligned oxide mask layer over the poly Si (or Si/siGe). A raised extrinsic base is then formed following the self-aligned mask formation. This self-aligned oxide mask blocks B diffusion from the raised extrinsic base to the corner of collector.
Abstract:
A high performance SiGe HBT that has a SiGe layer with a peak Ge concentration of at least approximately 20% and a boron-doped base region formed therein having a thickness. The base region includes diffusion-limiting impurities substantially throughout its thickness, at a peak concentration below that of boron in the base region. Both the base region and the diffusion-limiting impurities are positioned relative to a peak concentration of Ge in the SiGe layer so as to optimize both performance and yield.