摘要:
Techniques for reducing peak on-state voltage of a semiconductor device fabricated in a wafer. A substrate layer is provided. An isolation structure is provided to laterally isolate the semiconductor device from other semiconductor devices in the wafer. A tub structure is formed in the substrate layer. A base layer is provided such that the base layer is disposed under the substrate layer. The base layer includes an anode having an associated active region that includes a drift region in the substrate layer. The tub structure is disposed inside the active region such that presence of the tub structure reduces a thickness of the drift region.
摘要:
A semiconductor controlled rectifier (FIG. 4A) for an integrated circuit is disclosed. The semiconductor controlled rectifier comprises a first lightly doped region (100) having a first conductivity type (N) and a first heavily doped region (108) having a second conductivity type (P) formed within the first lightly doped region. A second lightly doped region (104) having the second conductivity type is formed proximate the first lightly doped region. A second heavily doped region (114) having the first conductivity type is formed within the second lightly doped region. A buried layer (101) having the first conductivity type is formed below the second lightly doped region and electrically connected to the first lightly doped region. A third lightly doped region (102) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region. A fourth lightly doped region (400) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region and electrically connected to the second and third lightly doped regions.
摘要:
A semiconductor controlled rectifier (FIG. 4A) for an integrated circuit is disclosed. The semiconductor controlled rectifier comprises a first lightly doped region (100) having a first conductivity type (N) and a first heavily doped region (108) having a second conductivity type (P) formed within the first lightly doped region. A second lightly doped region (104) having the second conductivity type is formed proximate the first lightly doped region. A second heavily doped region (114) having the first conductivity type is formed within the second lightly doped region. A buried layer (101) having the first conductivity type is formed below the second lightly doped region and electrically connected to the first lightly doped region. A third lightly doped region (102) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region. A fourth lightly doped region (400) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region and electrically connected to the second and third lightly doped regions.
摘要:
A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
摘要:
Power semiconductor device having a wafer, including emitter and collector electrodes arranged on opposite sides, wherein a gate electrode arranged on the emitter side has a conductive gate layer and an insulating layer arranged in the following order between the collector and emitter side: a p doped collector layer, an (n−) doped drift layer, an n doped enhancement layer, a p based base layer having a first and second base region, and an (n+) doped first and second emitter layer, wherein the emitter electrode contacts the first emitter layer and the first base region at an emitter contact area, wherein the second emitter layer is insulated from a direct contact to the emitter electrode by the insulating layer and wherein the second emitter layer is separated from the first emitter layer by the base layer.
摘要:
A semiconductor controlled rectifier (FIG. 4A) for an integrated circuit is disclosed. The semiconductor controlled rectifier comprises a first lightly doped region (100) having a first conductivity type (N) and a first heavily doped region (108) having a second conductivity type (P) formed within the first lightly doped region. A second lightly doped region (104) having the second conductivity type is formed proximate the first lightly doped region. A second heavily doped region (114) having the first conductivity type is formed within the second lightly doped region. A buried layer (101) having the first conductivity type is formed below the second lightly doped region and electrically connected to the first lightly doped region. A third lightly doped region (102) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region. A fourth lightly doped region (400) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region and electrically connected to the second and third lightly doped regions.
摘要:
A semiconductor device has a drift region in which a drift current flows if it is in the ON mode and which is depleted if it is in the OFF mode. The drift region is formed as a structure having a plurality of first conductive type divided drift regions and a plurality of second conductive type compartment regions in which each of the compartment regions is positioned among the adjacent drift regions in parallel to make p-n junctions, respectively.
摘要:
A method for improving the SiGe bipolar yield as well as fabricating a SiGe heterojunction bipolar transistor is provided. The inventive method includes ion-implanting carbon, C, into at one of the following regions of the device: the collector region, the sub-collector region, the extrinsic base regions, and the collector-base junction region. In a preferred embodiment each of the aforesaid regions include C implants.
摘要:
A semiconductor device has a drift region in which a drift current flows if it is in the ON mode and which is depleted if it is in the OFF mode. The drift region is formed as a structure having a plurality of first conductive type divided drift regions and a plurality of second conductive type compartment regions in which each of the compartment regions is positioned among the adjacent drift regions in parallel to make p-n junctions, respectively.
摘要:
Bidirectional thyristor device comprising a semiconductor body extending in a vertical direction between a first main surface and a second main surface opposite the first main surface, a first main electrode arranged on the first main surface, and a second main electrode arranged on the second main surface, is specified, wherein the semiconductor body comprises a first base layer of a first conductivity type, a second base layer of the first conductivity type, and a third base layer of a second conductivity type different than the first conductivity type arranged between the first base layer and the second base layer. The first main electrode acts as a cathode for a first thyristor functional element and as an anode for a second thyristor functional element of the bidirectional thyristor device. The bidirectional thyristor device is configured asymmetrically with respect to the first thyristor functional element and the second thyristor functional element.