Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
An approach includes a method of fabricating a switch. The approach includes forming a first cantilevered electrode, forming a second cantilevered electrode over an electrode and operable to contact the first cantilevered electrode upon an application of a voltage to the electrode, and forming an arm on the first cantilevered electrode with an extending protrusion extending upward from an upper surface of the arm.
Abstract:
An approach includes a method of fabricating a switch. The approach includes forming a first cantilevered electrode over a first fixed electrode, forming a second cantilevered electrode with an end that overlaps the first cantilevered electrode, forming a third cantilevered electrode operable to directly contact the first cantilevered electrode upon an application of a voltage to a second fixed electrode, and forming a hermetically sealed volume encapsulating the first fixed electrode, the second fixed electrode, the first cantilevered electrode, and the second cantilevered electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
An approach includes a method of fabricating a switch. The approach includes forming a first cantilevered electrode operable to directly contact a second fixed electrode upon an application of a voltage to a first fixed electrode, forming a second cantilevered electrode with an end that overlaps the first cantilevered electrode, and forming a hermetically sealed volume encapsulating the first fixed electrode, the second fixed electrode, the first cantilevered electrode, and the second cantilevered electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.