Abstract:
A system on a module and techniques for use and operation in multiple different smart grid devices and/or nodes are described herein. One example of a system on a module includes a processor, a flash memory device in communication with the processor, and a RAM memory device in communication with the processor. A connector provides an interface to the smart grid device, and includes a plurality of metrology and communications interfaces.
Abstract:
Software and/or firmware of a utility node device may be updated by utilizing an update package that includes multiple update items related to different types of the software and/or firmware. The utility node device may selectively install one or more of the multiple update items based on a type of the software and/or firmware that is currently installed on the device. The different types of software and/or firmware may relate to different versions of the software and/or firmware and/or different types of hardware. In some instances, an update item of the update package comprises a delta file that contains differences between different versions of the software and/or firmware. The utility node device may comprise a smart utility meter, sensor, control device, transformer, switch, relay, or the like.
Abstract:
A system set of a utility node device, such as a kernel and/or root file system, may be updated by utilizing a multi-system set configuration. For example, the multi-system set configuration may include a first system set that is generally configured to act as an “active” set, a second system set (e.g., “idle” set) that is configured to operate when the first system set is non-operational or in an “idle” state, and a third system set that is configured to operate when the first and second system sets are non-operational. During an update of a system set, an update package may be applied to the second “idle” system set, while the first “active” system set remains operational. The utility node device may comprise a smart utility meter, sensor, control device, transformer, switch, relay, or the like.
Abstract:
The techniques described herein implement an operating system that can reliably process time sensitive information in non real-time manner. Thus, the operating system described herein is capable of processing an instance of time sensitive input during a time period after the instance of time sensitive input is received (e.g., at a future point in time). To accomplish this, the techniques timestamp each instance of time sensitive input when it is received at a device. The techniques then store the timestamped instance of time sensitive input in a temporary queue, and make the timestamped instance available to the operating system at a time period after the time period when it is received, as indicated by the timestamp. Additional techniques described herein prioritize the activation of a driver configured to receive the time sensitive information during a boot sequence or a reboot sequence.
Abstract:
A system on a module and techniques for use and operation in multiple different smart grid devices and/or nodes are described herein. One example of a system on a module includes a processor, a flash memory device in communication with the processor, and a RAM memory device in communication with the processor. A connector provides an interface to the smart grid device, and includes a plurality of metrology and communications interfaces.
Abstract:
The techniques described herein implement an operating system that can reliably process time sensitive information in non real-time manner. Thus, the operating system described herein is capable of processing an instance of time sensitive input during a time period after the instance of time sensitive input is received (e.g., at a future point in time). To accomplish this, the techniques timestamp each instance of time sensitive input when it is received at a device. The techniques then store the timestamped instance of time sensitive input in a temporary queue, and make the timestamped instance available to the operating system at a time period after the time period when it is received, as indicated by the timestamp. Additional techniques described herein prioritize the activation of a driver configured to receive the time sensitive information during a bootup sequence or a reboot sequence.
Abstract:
A system set of a utility node device, such as a kernel and/or root file system, may be updated by utilizing a multi-system set configuration. For example, the multi-system set configuration may include a first system set that is generally configured to act as an “active” set, a second system set (e.g., “idle” set) that is configured to operate when the first system set is non-operational or in an “idle” state, and a third system set that is configured to operate when the first and second system sets are non-operational. During an update of a system set, an update package may be applied to the second “idle” system set, while the first “active” system set remains operational. The utility node device may comprise a smart utility meter, sensor, control device, transformer, switch, relay, or the like.
Abstract:
Software and/or firmware of a utility node device may be updated by utilizing an update package that includes multiple update items related to different types of the software and/or firmware. The utility node device may selectively install one or more of the multiple update items based on a type of the software and/or firmware that is currently installed on the device. The different types of software and/or firmware may relate to different versions of the software and/or firmware and/or different types of hardware. In some instances, an update item of the update package comprises a delta file that contains differences between different versions of the software and/or firmware. The utility node device may comprise a smart utility meter, sensor, control device, transformer, switch, relay, or the like.
Abstract:
A distributed metering platform virtualizes functions of a conventional metrology sensor and separates the virtualized functions from a metrology sensor. One or more virtual meters or applications may be instantiated at a network communication device that is remote from the metrology sensor and processes metrology data received from the metrology sensor. Each virtual meter may include multiple partitioned application spaces that are isolated from one another. In one example, a first application space includes a locked version of code and a second application space includes an unlocked version of code. Furthermore, each virtual meter may be isolated from other virtual meters such that each virtual meter is unable to affect operations and/or data associated with other virtual meters.
Abstract:
The techniques described herein implement an operating system that can reliably process time sensitive information in non real-time manner. Thus, the operating system described herein is capable of processing an instance of time sensitive input during a time period after the instance of time sensitive input is received (e.g., at a future point in time). To accomplish this, the techniques timestamp each instance of time sensitive input when it is received at a device. The techniques then store the timestamped instance of time sensitive input in a temporary queue, and make the timestamped instance available to the operating system at a time period after the time period when it is received, as indicated by the timestamp. Additional techniques described herein prioritize the activation of a driver configured to receive the time sensitive information during a boot sequence or a reboot sequence.