Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution
    4.
    发明授权
    Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution 有权
    基于差分耦合纳米机械系统的生物检测,使用自感悬臂与分子力分解

    公开(公告)号:US07959873B1

    公开(公告)日:2011-06-14

    申请号:US11491394

    申请日:2006-07-20

    IPC分类号: G01N33/00

    摘要: A biosensor is comprised of a free and a biofunctionalized recognition self-sensing nanocantilever, a dock adjacent to the ends of the nanocantilevers, and a gap between the nanocantilevers and dock. The self-sensing cantilevers each include a semiconductor piezoresistor defined in a pair of legs about which the cantilevers flex. A bias power or current is applied to the piezoresistor. The sensitivity of the cantilevers is optimized for a given ambient temperature and geometry of the cantilevers and dock by minimizing the force spectral density, SF, of the cantilevers to determine the optimum bias power, Pin. A sub-aN/√Hz force sensitivity is obtained by scaling down the dimensions of the cantilevers and supplying an optimum bias power as a function of temperature and geometry.

    摘要翻译: 生物传感器由免费的和生物功能化的识别自感纳米聚合物,邻近纳米聚合物末端的码头以及纳米悬臂与码头之间的间隙组成。 自感悬臂各自包括限定在一对腿部的半导体压敏电阻,悬臂弯曲在该支脚周围。 偏压电源或电流施加到压敏电阻。 通过最小化悬臂的力谱密度(SF)来确定最佳偏置功率Pin,悬臂梁的灵敏度对给定的环境温度和悬臂和基座的几何形状进行了优化。 通过缩小悬臂的尺寸并提供作为温度和几何形状的函数的最佳偏置功率,可以获得sub-aN /√Hz力灵敏度。

    Apparatus and method for vacuum-based nanomechanical energy force and mass sensors
    5.
    发明申请
    Apparatus and method for vacuum-based nanomechanical energy force and mass sensors 审中-公开
    基于真空的纳米机械能量力和质量传感器的装置和方法

    公开(公告)号:US20050161749A1

    公开(公告)日:2005-07-28

    申请号:US10502461

    申请日:2003-05-07

    摘要: A doubly clamped beam has an asymmetric piezoelectric layer within the beam with a gate proximate to the beam within a submicron distance with a gate and beam dipole. A suspended beam is formed using a Cl2/He plasma etch supplied at a flow rate ratio of 1:9 respectively into a plasma chamber. A parametric amplifier comprises a NEMS signal beam driven at resonance and a pair of pump beams driven at twice resonance to generate a modulated Lorentz force on the pump beams to perturb the spring constant of the signal beam. A bridge circuit provides two out-of-phase components of an excitation signal to a first and second NEMS beam in a first and second arm. A DC current is supplied to an AC driven NEMS device to tune the resonant frequency. An analyzer comprises a plurality of piezoresistive NEMS cantilevers with different resonant frequencies and a plurality of drive/sense elements, or an interacting plurality of beams to form an optical diffraction grating, or a plurality of strain-sensing NEMS cantilevers, each responsive to a different analyte, or a plurality of piezoresistive NEMS cantilevers with different IR absorbers.

    摘要翻译: 双夹紧光束在光束内具有非对称压电层,栅极和栅极和光束偶极子之间的亚微米距离内的栅极靠近光束。 使用以1:9的流量比提供的Cl 2/2 / He等离子体蚀刻分别形成悬浮梁到等离子体室中。 参数放大器包括以共振驱动的NEMS信号光束和以两次谐振为驱动的一对泵浦光束,以在泵浦光束上产生调制的洛伦兹力,以扰乱信号光束的弹簧常数。 桥接电路在第一和第二臂中向第一和第二NEMS波束提供激励信号的两个异相分量。 直流电流被提供给AC驱动NEMS器件以调谐谐振频率。 分析器包括具有不同谐振频率的多个压阻NEMS悬臂和多个驱动/感测元件或相互作用的多个光束以形成光学衍射光栅,或多个应变感测NEMS悬臂,每个响应于不同的 分析物或具有不同IR吸收剂的多个压阻NEMS悬臂。