Abstract:
A liquid concentration detecting device including a first substrate, a first temperature sensing element and a concentration sensor is provided. The first temperature sensing element and the concentration sensor are respectively disposed on opposite first surface and second surface of the first substrate. The concentration sensor includes a second substrate, a porous element, a heating element and a second temperature sensing element. The second substrate is disposed above the second surface. A portion of the liquid flows into the concentration sensor through the porous element, and the heating element heats the liquid in the concentration sensor. The second temperature sensing element measures the temperature variation of the liquid in the concentration sensor. The measured temperature and the temperature variation are compared to deduce a concentration of the liquid under detection.
Abstract:
A ceramic material includes zirconia toughened alumina (ZTA), which is doped with zinc ions and other metal ions, in which the other metal ions are chromium (Cr) ions, titanium (Ti) ions, gadolinium (Gd) ions, manganese (Mn) ions, cobalt (Co) ions, iron (Fe) ions, or a combination thereof. The ceramic material may have a hardness of 1600 Hv10 to 2200 Hv10 and a bending strength of 600 MPa to 645 MPa. The ceramic material can be used as wire bonding capillary.
Abstract:
A cathode layer and a membrane electrode assembly of a solid oxide fuel cell are provided. The cathode layer consists of a plurality of perovskite crystal films, and the average change rate of linear thermal expansion coefficients of these perovskite crystal films is about 5% to 40% along the thickness direction. The membrane electrode assembly includes the above-mentioned cathode layer, and the linear thermal expansion coefficients of these perovskite crystal films are reduced towards the solid electrolyte layer of the membrane electrode assembly.
Abstract:
Disclosed is a method of manufacturing a ceramic powder, which includes forming a slurry by mixing of first ceramic particles, binder and water, spraying and drying the slurry to form a first ceramic core portion, and thermally treating and shaping the first ceramic core portion. The first ceramic core portion has a first flexural strength and a first coefficient of thermal expansion. The method further includes forming another slurry to form a second ceramic shell portion formed by second ceramic particles and covering the first ceramic core portion. The second ceramic shell portion has a second flexural strength and a second coefficient of thermal expansion. The ceramic powder is formed by thermally treating and shaping the first ceramic core portion and the second ceramic shell portion.
Abstract:
A urea concentration identification device and a urea concentration identification method are provided. By providing an identical sine-wave AC signal to each of the urea concentration identification devices placed in urea solutions of different concentrations, different impedance values are output by the urea concentration identification devices since the urea solutions of different concentrations have different electrical interactions with the electrodes of the urea concentration identification device. Differences of the impedance output by the urea concentration identification device function as a data set for determining the concentration of the urea solution to be determined.
Abstract:
A cathode layer and a membrane electrode assembly of a solid oxide fuel cell are provided. The cathode layer consists of a plurality of perovskite crystal films, and the average change rate of linear thermal expansion coefficients of these perovskite crystal films is about 5% to 40% along the thickness direction. The membrane electrode assembly includes the above-mentioned cathode layer, and the linear thermal expansion coefficients of these perovskite crystal films are reduced towards the solid electrolyte layer of the membrane electrode assembly.
Abstract:
A urea concentration identification method is provided. By providing an identical sine-wave AC signal to each of the urea concentration identification devices placed in urea solutions of different concentrations, different impedance values are output by the urea concentration identification devices since the urea solutions of different concentrations have different electrical interactions with the electrodes of the urea concentration identification device. Differences of the impedance output by the urea concentration identification device function as a data set for determining the concentration of the urea solution to be determined.
Abstract:
A composition and a device for purification of nitrogen-oxide-containing gas is provided. It can purify harmful nitrogen-oxide-containing gases, such as nitric oxide or nitrogen dioxide. The composition includes an alkaline substance and at least one organic acid, the organic acids having an enediol group, enediamine group, or amine group of cyclopentane compounds, cyclohexane compounds, cycloheptane compounds, or phenanthrene compounds.
Abstract:
A ceramic material includes zirconia toughened alumina (ZTA) doped with scandium (Sc) ions. ZTA can be further doped with other metal ions, and the other metal ions include cobalt (Co) ions, chromium (Cr) ions, zinc (Zn) ions, titanium (Ti) ions, manganese (Mn) ions, nickel (Ni) ions, or a combination thereof. The ceramic material can be used as a ceramic object, such as a wire bonding capillary, a heat dissipation plate, a denture tooth, orthopedic implants, direct bonded copper, or a high-temperature co-fired ceramic.
Abstract:
A method of forming low-k material is provided. The method includes providing a plurality of core-shell particles. The core of the core-shell particles has a first ceramic with a low melting point. The shell of the core-shell particles has a second ceramic with a low melting point and a low dielectric constant. The core-shell particles are sintered and molded to form a low-k material. The shell of the core-shell particles is connected to form a network structure of a microcrystal phase.