Abstract:
A scheduling method of uplink resource unit includes selecting an uplink parameter set, by calculating the uplink parameter set capable of achieving a minimized energy consumption according to a traffic and a QoS of a user equipment (UE). The uplink parameter set allows a plurality of transmission variations. A score function is used to calculate a score of a transmission condition variation of the UE and a transmission order of the UE is determined according to the score. A disposing position of the resource units in uplink subcarriers is determined. The time occupied by the disposing position is checked to see whether or a delay constraint allowed by the UE is satisfied. If the result of checking the disposing position does not satisfy the delay constraint, the number of consecutive subcarriers is changed and the step of determining the disposing position of the resource units in the uplink subcarriers is repeatedly performed.
Abstract:
A method for vehicle positioning is provided, which includes the steps of identifying at least one vehicle in an image, obtaining identification information of each vehicle from the image, and transforming coordinates of each vehicle in the image into positioning information of the corresponding vehicle according to mapping information. The positioning information is a position of the corresponding vehicle in real world. Precise lane-level vehicle positioning can be achieved based on comparison with the identification information or the positioning information.
Abstract:
A scheduling method of uplink resource unit includes selecting an uplink parameter set, by calculating the uplink parameter set capable of achieving a minimized energy consumption according to a traffic and a QoS of a user equipment (UE). The uplink parameter set allows a plurality of transmission variations. A score function is used to calculate a score of a transmission condition variation of the UE and a transmission order of the UE is determined according to the score. A disposing position of the resource units in uplink subcarriers is determined. The time occupied by the disposing position is checked to see whether or a delay constraint allowed by the UE is satisfied. If the result of checking the disposing position does not satisfy the delay constraint, the number of consecutive subcarriers is changed and the step of determining the disposing position of the resource units in the uplink subcarriers is repeatedly performed.
Abstract:
A method for vehicle positioning is provided, which includes the steps of identifying at least one vehicle in an image, obtaining identification information of each vehicle from the image, and transforming coordinates of each vehicle in the image into positioning information of the corresponding vehicle according to mapping information. The positioning information is a position of the corresponding vehicle in real world. Precise lane-level vehicle positioning can be achieved based on comparison with the identification information or the positioning information.
Abstract:
A positioning method and a positioning system based on light intensity are provided. The positioning system comprises a lighting system, a sense feedback device and a positioning module. The lighting system comprises at least three point light sources and sequentially adjusts luminance of these point light sources to light up a target. The sense feedback device is disposed on the target and used to collect light intensity information of the light projected on the target by the lighting system. The positioning module calculates a distance between the target and each of the point light sources based on the light intensity information and calculates a positioning location of the target based on the locations of the point light sources and the distances between the target and the point light sources.
Abstract:
A positioning method and a positioning system based on light intensity are provided. The positioning system comprises a lighting system, a sense feedback device and a positioning module. The lighting system comprises at least three point light sources and sequentially adjusts luminance of these point light sources to light up a target. The sense feedback device is disposed on the target and used to collect light intensity information of the light projected on the target by the lighting system. The positioning module calculates a distance between the target and each of the point light sources based on the light intensity information and calculates a positioning location of the target based on the locations of the point light sources and the distances between the target and the point light sources.