Abstract:
In accordance with an embodiment, a method includes driving a predetermined load using a driver circuit according to a drive pattern; supplying power to the driver circuit using a switched-mode power supply (SMPS) configured to be coupled to at least one external component; and verifying functionality of the SMPS while driving the predetermined load. Verifying the functionality includes monitoring at least one operating parameter of the SMPS, where the at least one operating parameter of the SMPS is dependent on the drive pattern and the at least one external component, comparing the at least one operating parameter to at least one expected operating parameter to form a first comparison result, and indicating an error condition based on the first comparison result.
Abstract:
In some examples, this disclosure describes a method of operating a plurality of battery management circuits of a battery management system associated with an electric device. The method may comprise adjusting a first trim value associated with a first battery management circuit during operation of the electric device, and adjusting a second trim value associated with a second battery management circuit during operation of the electric device. The method may also comprise sinking a first amount of current in the first battery management circuit based on the first trim value; and sinking a second amount of current in the second battery management circuit based on the second trim value, wherein sinking the first amount of current and sinking the second amount of current causes the first battery management circuit and the second battery management circuit to consume substantially similar amounts of current.
Abstract:
A device is configured to receive, from a controller, an instruction requesting data for the device and determine a comparison result value based on a comparison of the data for the device and a reference value. The device is further configured to determine whether to respond to the instruction based on the comparison result value and, in response to a determination to respond to the instruction, output, to the controller, the comparison result value, wherein, to output the comparison result value, the device is configured to refrain from outputting the data for the device.
Abstract:
In accordance with an embodiment, a method of transferring data includes determining, by a first device, a data check field of a data frame based on a predetermined identification field and a plurality of data bits, wherein the predetermined identification field represents at least one of a content, source or target of the plurality of data bits; and transmitting, by the first device to a second device, the data frame comprising the plurality of data bits and the data check field without directly transmitting the predetermined identification field.
Abstract:
Systems and techniques are described for monitoring the operating temperature of one or more circuit elements, such as a metal oxide field effect transistor (MOSFET) switch, where the circuit element is used to control at least one phase of an electric motor. The systems and techniques may calculate temperature by determining at least two electrical signals from the circuit element taken at least two different times. This results in an accurate temperature calculation without requiring precise knowledge of the particular characteristics of each respective circuit element.
Abstract:
A device is operated in a low power mode of operation. The device receives a differential signal that includes a first polarity signal and a second polarity signal. A slope of a first direction is detected in the differential signal and a slope of a second direction is detected in the differential signal. A wakeup of the device is caused in response to the detection of the first slope of the differential signal and the second slope of the differential signal.
Abstract:
In some examples, this disclosure describes a method of measuring a temperature-dependent voltage drop over a temperature sensitive resistor. The method may comprise delivering a reference voltage to the temperature sensitive resistor in a first instance of time; determining an auto-ranging current through the temperature sensitive resistor while the reference voltage is delivered to the temperature sensitive resistor; determining a temperature measurement current based on the auto-ranging current; delivering the temperature measurement current to the temperature sensitive resistor in a second instance of time, wherein the second instance of time is after the first instance of time; and measuring the temperature-dependent voltage drop over the temperature sensitive resistor while the temperature measurement current is delivered to the temperature sensitive resistor.
Abstract:
A device is configured to receive, from a controller, an instruction requesting data for the device and determine a comparison result value based on a comparison of the data for the device and a reference value. The device is further configured to determine whether to respond to the instruction based on the comparison result value and, in response to a determination to respond to the instruction, output, to the controller, the comparison result value, wherein, to output the comparison result value, the device is configured to refrain from outputting the data for the device.
Abstract:
In accordance with an embodiment, a method of transferring data includes determining, by a first device, a data check field of a data frame based on a predetermined identification field and a plurality of data bits, wherein the predetermined identification field represents at least one of a content, source or target of the plurality of data bits; and transmitting, by the first device to a second device, the data frame comprising the plurality of data bits and the data check field without directly transmitting the predetermined identification field.
Abstract:
In accordance with an embodiment, a method includes monitoring a first voltage across a buffer capacitor; activating a first current path between a power supply node and the buffer capacitor when the monitored first voltage is below a first threshold voltage, activating a second current path between the power supply node and the buffer capacitor when the monitored first voltage is below a second threshold voltage, and transferring power from the buffer capacitor to a driver circuit coupled across the buffer capacitor.